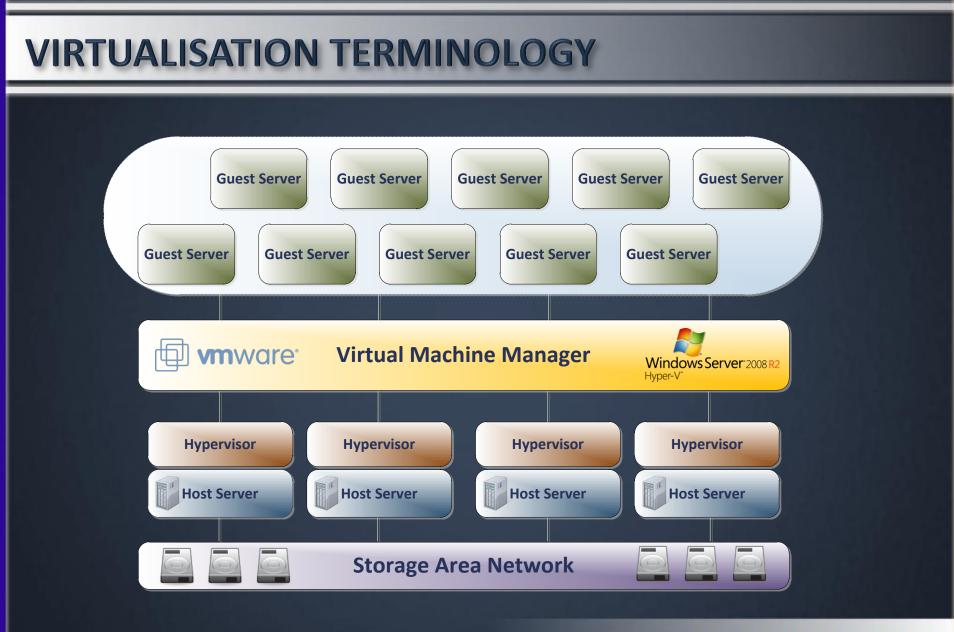


THROUGH THE VIRTUAL LOOKING GLASS: MONITORING SQL SERVER IN THE VIRTUAL WORLD

Gavin Payne Senior Consultant

gavin@coeo.com


Virtualisation refresher

Why we have to change the way we monitor

Live monitoring of CPU, Memory and Storage

Monitoring best practices for the virtual world

SQL SERVER AND VIRTUALISATION

Detection

SQL Server will report starting on a virtual server

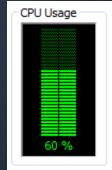
02/09/2011 19:30:01	Server	Authentication mode is MIXED.
02/09/2011 19:29:59	Server	System Manufacturer: 'Microsoft Corporation', System Model: 'Virtual Machine'.
02/09/2011 19:29:59	Server	Server process ID is 3240.
02/09/2011 19:29:59	Server	All rights reserved.

However, no new error messages or features

Hot-add Memory

Existing feature, now used to support Dynamic Memory

GOOD VS. BAD CONTENTION


What is good contention?

- 5% CPU usage, 95% free capacity
- Could consolidate 20:1
- Realistically between 10:1 and 15:1

And bad contention?

- The hypervisor will have to control resources
- Immediate access to high performing physical resources can no longer be assured


WHY MONITORING HAS TO CHANGE

WHY HAS MONITORING CHANGED?

Windows doesn't know the truth anymore

What does 100% CPU or 8GB available represent?

Task Manager Guest OS

% Guest Runtime Host OS

Virtual machine limit (percentage):

Percent of total system resources:

Hyper-V CPU Resource Limit

40

WHY HAS MONITORING CHANGED?

More sources of confusion

System	
System	
Processor:	Intel(R) Core(TM) i3-2100 CPU @ 3.10GHz 3.09 GHz
Installed memory (RAM):	2.93 GB
System type:	64-bit Operating System

Some hardware calls bypass the hypervisor

wait_type	waiting_tasks_count	wait_time_ms	max_wait_time_ms	signal_wait_time_ms
PAGEIOLATCH_SH	643	13138	339	15
SOS_SCHEDULER_YIELD	13526	249	36	206

SQL Server wait stats show symptoms not causes

INFORMATION VS. MISINFORMATION

Information is still visible

- Task Manager
- Performance Monitor and PAL
- SQL Server wait stats and Perfstats

Misinformation is equally visible

Dynamic resource allocation and contention are often invisible to these tools

CPU MONITORING

CPU MONITORING

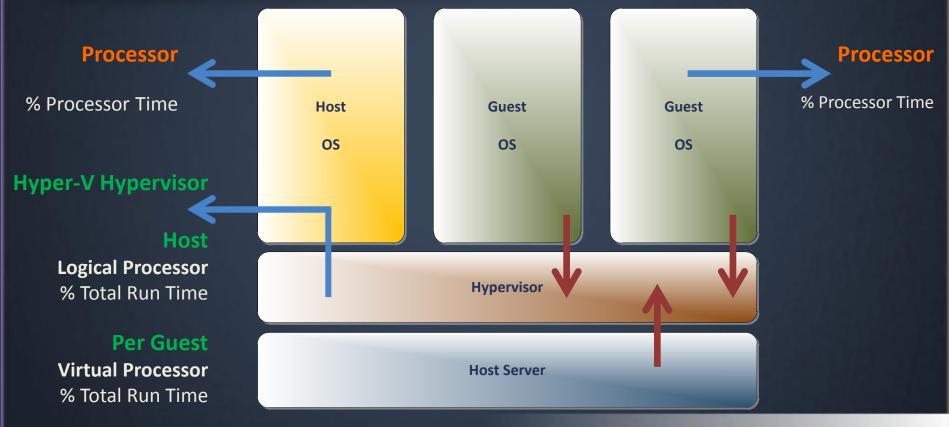
Where to monitor CPU usage

Wait stats from within SQL Server?

E	wait_type	waiting_tasks_count	wait_time_ms
	DIRTY_PAGE_POLL	3563	393686
	LOGMGR_QUEUE	2850	393657
	HADR_FILESTREAM_IOMGR_IOCOMPLETION	739	383577
	SOS_SCHEDULER_YIELD	573	1612
	SLEEP_TASK	494	192665
	SP_SERVER_DIAGNOSTICS_SLEEP	391	387389

Perfmon within the Guest Server?

Maybe

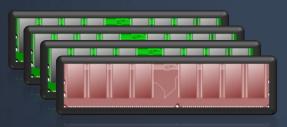

Yes*

Yes

Perfmon within the Host Server?

CPU MONITORING Hyper-V CPU Monitoring Model

DEMO


CPU monitoring

Why has monitoring memory has changed?

- Demand based memory allocation is now common
- Each VM can have as much as it needs while it can

- "Physical memory" can be added dynamically
- Reclamation methods are transparent to the OS and apps
- As a result Task Manager and Perfmon are misleading

Hyper-V Dynamic Memory methods

- Enlightened Memory Addition adds memory to Windows
- Ballooning Driver reclaims memory from Windows by allocating itself non-pageable memory

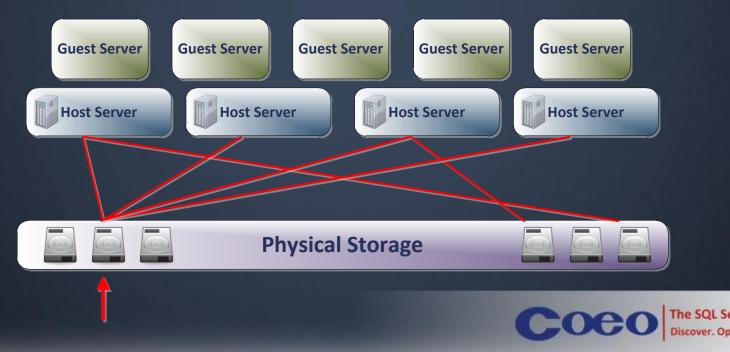
SQL Server and Dynamic Memory

- On startup Hot-Add Memory support is detected
- Buffer Pool VAS is set to 16x Startup Memory
- Buffer Pool Committed Size is dynamically limited to available physical memory

Monitoring SQL Server with Dynamic Memory

- What can grow, and shrink?
- 2008: Buffer Pool Denali: Total memory

- Use sys.dm_os_sys_info and sys.dm_os_sys_memory
- Compare BPool Target as a % of Physical Memory


Memory monitoring

Very similar to physical storage monitoring

- IO throttling by the hypervisor is only just available
- However, hypervisors add a new layer of contention

Warning signs from within SQL Server

- Traditional PAGEIOLATCH_xx wait stat is a warning but there maybe other causes
- High disk latencies from sys.dm_io_virtual_file_stats

Latency targets, even when virtualised: Data files: < 20ms Log files: < 10ms

Monitoring within the guest and host servers

- Windows logical drive counters within the guest
- Windows physical drive counters within the host

Monitoring at the storage layer

of the total HBA and storage controller capacity in use

Storage monitoring

BEST PRACTICES

BEST PRACTICES

Look at the complete picture

- Compliment real time performance data
- Use known SQL Server metrics:
 - Backup times calculate MB/s
 - ETL task runtimes CPU availability

BEST PRACTICES

What to monitor and where

- SQL Server Wait stats and Buffer Pool size
- Guest OS % logical CPU, "Physical MB", Available MB
- Host OS % physical CPU, Physical IO
- Storage Layer Consolidated HBA and Controller %'s

SUMMARY

Wait Stats are good warning signs Monitor CPU at the Guest and Host V **Understand dynamic memory models Use job run times as benchmarks**