
T-SQL Performance

Recommendations

SQLBits9 - Liverpool, 1st October 2011

About Me

Contact:
mradivojevic@solidq.com
www.solidq.com

Dipl.-Ing. Milos Radivojevic, Vienna, Austria

Mentor with

10+ years SQL Server experience: MCTS, MCP, MCT
-Relational and DWH/BI area

Workshop: SQL Server for Application Developers
Conference Speaker: SQLBits, SQLU Summit, SQL UG

Austria

About

SolidQ provides the world's most trusted and reliable business

intelligence, data management, collaboration and custom

solutions for Microsoft's cloud and on-premise platforms.

• 80 of the world’s top information experts in our BI and data

management team, including more than 30 SQL MVPs

• Authored over 30 industry leading books

• Frequent speakers at local and international SQL Server

technical conferences (TechEd, SQL PASS Summit, SQL

Saturdays…)

• Serving over 800 clients in 22 countries

www.solidq.com

http://www.solidq.com/

www.solidq.com/sqj

SolidQTM Journal

• Free, monthly e-magazine providing answers you

need to be successful with your Microsoft SQL

Server, Business Intelligence, and software

development solutions

• Featuring in-depth technical articles, real-life case

studies, practical columns, and seasoned

perspectives from our lineup of influential global

experts

• Both inside SolidQ and around the community

http://www.solidq.com/sqj

Agenda

• General Recommendation

• Functions in the WHERE Clause

• Data Type Conversions in WHERE Clause

• SARGable and Non-SARGable

• Local Variables

• Database Constraints and Performance

• UDFs: Scalar vs. Inline Table

•Other Recommendations

General Recommendation

• The query optimizer does a good job

• It considers a lot of possible plans and chooses a very

good one

• Almost always this is an optimal execution plan

• Recommendation: Do not write a code which limits

optimization options for the query optimizer!

Functions in the WHERE Clause

• A function call on a WHERE clause column prevents the

optimizer from using an appropriate index operator

• Function is evaluated for each row => the optimizer uses

in this case TableScan or IndexScan operator instead of

appropriate Seek operator

• Recommendation: Function should be called against

parameters, table columns should not be used as

arguments!

Data Type Conversions

• Implicit conversion

• Estimation problem with LIKE operator

• Recommendation: Avoid string conversions especially

when involved columns are “varchar” or “char” data type

Non-SARGable WHERE Clause

• Search ARGument ABLE - sargeable predicate is one in

which an index can be used

• Sargable: =,>,<,>=,<=, BETWEEN, LIKE without leading

asterisk

• Non-sargable <>, IN, OR, NOT IN, NOT EXISTS, NOT LIKE,

LIKE with leading %

• Recommendation: Avoid non-sargable predicates and

replace them with sargable equivalents, when it’s possible

Local Variables

• By using a local variable the optimizer cannot generate an

optimal execution plan because the variable value is not

known at the compile time

• Recommendation: Understand the behavior of local

variables and how they affect an execution plan

Database Constraints and Performance

• Foreign Keys

• Unique Constraints

• Check Constraints

• Recommendation: Use database constraints – they are

not important for consistence only but also for

performance!

Other Recommendations

• VERIFY EXISTENCE - EXISTS vs. COUNT(*)

• Data existence verifying performs same for both versions

• UNION vs. UNION ALL

• Use UNION ALL when you know that sets are not overlapped

and when duplicates are allowed

• IN vs. EXISTS

• From version 2005 perform same

• The SQL Server optimizer should have all relevant

information and only then it can generate an optimal

execution plan.

Other Recommendations

• SELECT ONLY REQUIRED COLUMNS

• By using a local variable the optimizer cannot generate an

optimal execution plan because the variable value is unknown at

compile time

• USE ORDER BY ONLY WHEN IT’S NECESSARY

• Data existence verifying perform same, but when local variables

the whole table will be scanned

• Only required information should be requested. It sounds

trivial, but there are lot of examples with unnecessary

SELECT * or ORDER BY statements

Other Recommendations

• Use SET NOCOUNT ON - After every query in batch or SP

is executed, the server reports the number of rows

affected => network overhead

• Reduce lock overhead by using NOLOCK hints

• Be careful regarding inconsistency problems, but be

pragmatic, there is a lot of cases where these

problems cannot occur or it doesn’t matter

UDFs: Scalar vs. Inline Table

• Scalar UDF is called for each row

• Inline TVF will be expanded and an optimal plan will be

generated

• Recommendation: Scalar UDF is more intuitive, but an

inline function performs better!

#SQLBITS

Speaker Title Room

Ola Hallengren Inside Ola Hallengrens Maintenance Solution Aintree

Mark Pryce-Maher Building a SSMS Add-in; The Agony and Ecstasy Lancaster

Marco Russo Vertipaq vs OLAP: Change Your Data Modeling Approach Pearce

Gert Drapers Database Development with SQL Server Juneau Boardroom

Satya Jayanty SQL Server Upgrade: take help from tools and best practices Empire

Emil Glownia Advanced SSRS. Find out what you have been missing. Derby

Next Sessions

• Contact:

 mradivojevic@solidq.com

 www.solidq.com

Thank You!

http://www.solidq.com/

