
SQLBits
Session: Thursday, 17:10

Introduction to Performance
Troubleshooting Using Wait Statistics (L2-300)

Paul S. Randal

paul@SQLskills.com

Paul S. Randal

 Consultant/Trainer/Speaker/Author

 CEO, SQLskills.com

 Email: Paul@SQLskills.com

 Blog: https://www.SQLskills.com/blogs/Paul

 Twitter: @PaulRandal

 5 years at DEC responsible for the VMS file-system and chkdsk

 Almost 9 years as developer/manager in the SQL Storage Engine team through
August 2007, ultimately responsible for Core Storage Engine

 Instructor-led training, consulting (anything you need)

 Online training: http://pluralsight.com/

 Get our newsletter: https://www.sqlskills.com/Insider

http://www.sqlskills.com/
mailto:paul@microsoft.com
http://www.sqlskills.com/sqlserverstorageengine
http://pluralsight.com/
http://pluralsight.com/
https://www.sqlskills.com/Insider

Overview

 Very common to see ‘knee-jerk’ performance tuning where someone
jumps to a conclusion based on superficial analysis of performance data

 Interpreting wait statistics is not hard, but needs practice

 We’re going to cover
 Introduction

 Thread lifecycle

 Waits and wait times

 DMVs

 Some common wait types

Interpreting the Data

 Don’t do ‘knee-jerk’ performance troubleshooting
 Work through the data to see what may be the root cause

 You’ll end up spending less time overall

 Proficiency in using wait statistics data comes from:
 Retrieving the data correctly

 Understanding what common wait types mean

 Recognizing patterns

 Avoiding inappropriate Internet advice

 Practice!

 Better to have a series of snapshots of wait statistics over time

What are Waits?

 The term ‘wait’ means that a thread running on a processor cannot
proceed because a resource it requires is unavailable
 It has to wait until the resource is available

 The resource being waited for is tracked by SQL Server
 Each resource maps to a wait type

 Example resources that may be unavailable:
 A lock (LCK_M_XX wait type)

 A data file page in the buffer pool (PAGEIOLATCH_XX wait type)

 Results from part of a parallel query (CXPACKET wait type)

 A latch (LATCH_XX wait type)

Thread Scheduling

 SQL Server performs its own thread scheduling
 Called non-preemptive scheduling

 More efficient for SQL Server than relying on Windows scheduling

 Performed by the SQLOS layer of the Storage Engine

 Each processor core (whether logical or physical) has a scheduler
 A scheduler is responsible for managing the execution of work by threads

 Schedulers exist for user threads and for internal operations

 Use the sys.dm_os_schedulers DMV to view schedulers

 When SQL Server has to call out to the OS, it must switch the calling
thread to preemptive mode so the OS can interrupt it if necessary

Components of a Scheduler

 All schedulers are composed of three ‘parts’

 Threads transition around these until their work is complete

Thread States

 A thread can be in one of three states when being actively used as part of
processing a query

 RUNNING
 The thread is currently executing on the processor

 SUSPENDED
 The thread is currently on a Waiter List waiting for a resource

 RUNNABLE
 The thread is currently on the Runnable Queue waiting to execute on the processor

 Threads transition between these states until their work is complete

Transition: RUNNING to SUSPENDED

 A thread continues executing on the processor until it must wait for a
resource to become available
 The thread’s state changes from RUNNING to SUSPENDED

 The thread has been ‘suspended’ and moves to a Waiter List

Transition: SUSPENDED to RUNNABLE

 A thread continues to wait until it is told that the resource is available
 The thread’s state changes from SUSPENDED to RUNNABLE

 The thread moves to the Runnable Queue

 This is called being ‘signaled’

Transition: RUNNABLE to RUNNING

 The thread waits on the Runnable Queue until it is picked as the next
thread when the processor becomes available
 The thread’s state changes from RUNNABLE to RUNNING

 2019+: it might move to a different scheduler in the same NUMA node

Wait Times Definition

sys.dm_os_waiting_tasks DMV

 This DMV shows all threads that are currently suspended

 Think of it as the ‘what is happening right now?’ view of a server
 Usually very first thing to run when approaching a ‘slow’ server

 Most useful information this DMV provides:
 Session ID and execution context ID of each thread

 Wait type for each suspended thread

 Description of the resource for some wait types

 E.g. for locking wait types, the lock level and resource is described

 Wait time for each suspended thread

 If the thread is blocked by another thread, the ID of the blocking thread

 Show what’s the head of a blocking chain and can show
non-intuitive patterns

sys.dm_os_wait_stats DMV

 This DMV shows aggregated wait statistics for all wait types
 Aggregated since the server started or the wait statistics were cleared

 Think of this as the ‘what has happened in the past?’ view of a server

 Most useful information this DMV provides :
 The name of each wait type

 The number of times a wait has been for this wait type

 The aggregate signal and overall wait times for all waits for this wait type

 Some math is required to make the results useful
 Calculating the resource wait time

 Calculating the average times rather than the total times

What’s Relevant?

 An extremely important point to bear in mind is that waits ALWAYS occur
inside SQL Server
 Look for actionable items and filter out things like background tasks

 Filter out benign waits such as WAITFOR, LAZYWRITER_SLEEP

 Look at the demo code to see what I mean

 Need to identify the top, relevant waits and then drill in

 Example:
 1000 waits for LCK_M_S: Is it a problem?

 No, if that was over 8 hours, there were 10 million locks acquired, and total wait time
for the LCK_M_S locks was only 50s altogether

 Yes, if each wait was for 50s

Top Wait Types

 Survey results from 1700+ SQL Server instances across Internet

Source: my blog at https://sqlskills.com/p/083

https://sqlskills.com/p/083

PAGEIOLATCH_XX Wait and Solutions

 Waiting for a data file page to be read from disk into memory
 Common modes to see are SH and EX

 Do not assume the I/O subsystem or I/O path is the problem

 Further analysis:
 Determine which tables/indexes are being read

 Analyze I/O subsystem latencies with sys.dm_io_virtual_file_stats

 Move the affected data files to faster I/O subsystem?

 Correlate with CXPACKET waits, suggesting parallel scans

 Create appropriate nonclustered indexes and/or update statistics

 Examine query plans for parallel scans and implicit conversions

 Investigate buffer pool memory pressure and Page Life Expectancy

 If data volume has increased, consider increasing memory

PAGELATCH_XX Wait and Solutions

 Waiting for access to an in-memory data file page
 Common modes to see are SH and EX

 Do not confuse these with PAGEIOLATCH_XX waits

 Does not mean add more memory or I/O capacity

 Further analysis:
 Determine the page(s) that the thread is waiting for access to

 Classic tempdb contention?

 Add tempdb data files, enable trace flag 1118, reduce temp table usage

 2019 helps with this, including system tables in memory

 Analyze the table and index structures involved

 Excessive page splits occurring in indexes

 Insert-point hotspot in a clustered index with ever-increasing key

LCK_M_XX Wait and Solutions

 A thread is waiting for a lock that cannot be granted because another
thread is holding an incompatible lock

 Do not assume that locking is the root cause

 Further analysis:
 Follow blocking chain to see what the lead blocking thread is waiting for

 Use blocked process report to capture info on queries waiting for locks

 Michael Swart’s blog post (https://sqlskills.com/p/090)

 Lock escalation from a large update or table scan?

 Consider a different indexes, snapshot isolation, a different isolation level, or
locking hints

 Something preventing a transaction from releasing its locks quickly?

 E.g. synchronous DBM/AG, DTC, or log throughput problems

https://sqlskills.com/p/090

Demo: Insert hotspot and using the DMVs

WRITELOG Wait

 What does it mean:
 Waiting for a transaction log block buffer to flush to disk

 Avoid knee-jerk response:
 Do not assume that log file I/O system has a problem (can be the case)

 Do not create additional transaction log files

 Further analysis:
 Correlate WRITELOG wait time with I/O subsystem latency using

sys.dm_io_virtual_file_stats

 Look at average size of transactions and for extra log being generated

 Look at average disk write queue length for log drive

 If constantly 31/32 (111/112 on SQL 2012+) then the internal limit has
been reached for outstanding transaction log writes for a single database

WRITELOG Wait Solutions

 Move the log to a faster I/O subsystem

 Increase size of transactions to prevent many tiny log block flushes

 Remove unused nonclustered indexes to reduce logging overhead from
maintaining unused indexes during DML operations

 Check for incorrect CACHE size of SEQUENCE objects

 Change index keys or introduce FILLFACTORs to reduce page splits

 Investigate whether synchronous database mirroring/AGs/SAN
replication is introducing delays

 Potentially split the workload over multiple databases or servers

 SQL Server 2014: delayed durability and In-memory OLTP

CXPACKET Wait Explanation

 What does it mean:
 Parallel operations are taking place

 Accumulating very fast implies skewed work distribution amongst threads or one of
the workers is being blocked by something

 Avoid knee-jerk response:
 Do not set server-wide MAXDOP to 1, disabling parallelism

 Further analysis:
 Correlation with PAGEIOLATCH_SH waits? Implies large, parallel scans

 Examine CXPACKET query plan to see if the query plans make sense

 Are there non-zero ID threads showing CXPACKET wait?

CXPACKET Wait Example (1)

CXPACKET Wait Example (2)

CXPACKET Wait Solutions

 Possible root-causes:
 Just parallelism occurring

 Table scans because of missing nonclustered indexes or incorrect query plan

 Out-of-date statistics or cardinality issue causing skewed work distribution

 If there is actually a problem:
 Make sure statistics are up-to-date and appropriate indexes exist

 MAXDOP for a query? Or just a database (in 2016+)? Or Resource Governor?

 MAXDOP for the instance? Test to figure out best value for *you*:
 No NUMA then = # logical cores, up to max of 8

 NUMA = # logical cores per NUMA node, up to 16 (2016+) or 8 (< 2016)

 General guidance, soft-NUMA complicates this

 Set ‘cost threshold for parallelism’ higher to avoid parallel plans
 Jon’s blog post at https://sqlskills.com/p/094 provides a guestimate

https://sqlskills.com/p/094

Demo: Parallelism

ASYNC_NETWORK_IO Wait

 What does it mean:
 SQL Server is waiting for a client to acknowledge receipt of sent data

 Avoid knee-jerk response:
 Do not assume that the problem is network latency

 Further analysis:
 Analyze client application code, client app server, network latencies

 Possible root-causes and solutions:
 Usually poorly-coded application that is doing RBAR (Row-By-Agonizing-Row)

 Very easy to show using a large query and SSMS on same machine as SQL Server

 Could be from using MARS with large result sets or BCP inbound

 Also look for network issues, incorrect duplex settings, or TCP
chimney offload problems (see https://sqlskills.com/p/102)

https://sqlskills.com/p/102

OLEDB Wait

 What does it mean:
 The OLE DB mechanism is being used

 Avoid knee-jerk response that problem is linked servers

 Further analysis:
 What are the queries doing that are waiting for OLEDB?

 If linked servers are being used, what is causing delay on linked server?

 Possible root-causes:
 DBCC CHECKDB and related commands use OLE DB internally

 Many DMVs use OLE DB internally so it could be a third-party monitoring tool that is
repeatedly calling DMVs (especially if they’re very short waits)

 Poor performance of a linked server

Summary: Methodology

 Gather information about exactly when the performance problem arose
and the user-visible characteristics of the problem

 Gather information about what changed before the problem arose

 Examine the output from sys.dm_os_waiting_tasks
 What is happening on the server right now?

 Examine the output from sys.dm_os_wait_stats
 What has happened in the past?

 Look at the top 3-4 relevant waits

 Avoid temptation to knee-jerk and equate symptoms with root-cause

 Gather further information from relevant sources
 DMVs, query plans, performance counters, code analysis

Resources

 Comprehensive waits/latches library: https://www.SQLskills.com/helps/waits

 Whitepapers:

 SQL Server Performance Tuning Using Wait Statistics: A Beginners Guide

 https://sqlskills.com/p/103

 Diagnosing and Resolving Latch Contention on SQL Server

 Diagnosing and Resolving Spinlock Contention on SQL Server

 Gnarly links – see our whitepapers page at https://sqlskills.com/p/104

 Blog post categories

 https://www.sqlskills.com/blogs/paul/category/wait-stats/ /latches/ /spinlocks/

 Pluralsight: SQL Server: Performance Tuning Using Wait Statistics

https://www.sqlskills.com/helps/waits
https://www.sqlskills.com/helps/waits
https://sqlskills.com/p/103
https://sqlskills.com/p/104
https://www.sqlskills.com/blogs/paul/category/wait-stats/
https://www.sqlskills.com/blogs/paul/category/wait-stats/
https://www.sqlskills.com/blogs/paul/category/wait-stats/

Thank you!
Questions? Paul@SQLskills.com

