
SQLBits
Session: Thursday, 17:10

Introduction to Performance
Troubleshooting Using Wait Statistics (L2-300)

Paul S. Randal

paul@SQLskills.com

Paul S. Randal

 Consultant/Trainer/Speaker/Author

 CEO, SQLskills.com

 Email: Paul@SQLskills.com

 Blog: https://www.SQLskills.com/blogs/Paul

 Twitter: @PaulRandal

 5 years at DEC responsible for the VMS file-system and chkdsk

 Almost 9 years as developer/manager in the SQL Storage Engine team through
August 2007, ultimately responsible for Core Storage Engine

 Instructor-led training, consulting (anything you need)

 Online training: http://pluralsight.com/

 Get our newsletter: https://www.sqlskills.com/Insider

http://www.sqlskills.com/
mailto:paul@microsoft.com
http://www.sqlskills.com/sqlserverstorageengine
http://pluralsight.com/
http://pluralsight.com/
https://www.sqlskills.com/Insider

Overview

 Very common to see ‘knee-jerk’ performance tuning where someone
jumps to a conclusion based on superficial analysis of performance data

 Interpreting wait statistics is not hard, but needs practice

 We’re going to cover
 Introduction

 Thread lifecycle

 Waits and wait times

 DMVs

 Some common wait types

Interpreting the Data

 Don’t do ‘knee-jerk’ performance troubleshooting
 Work through the data to see what may be the root cause

 You’ll end up spending less time overall

 Proficiency in using wait statistics data comes from:
 Retrieving the data correctly

 Understanding what common wait types mean

 Recognizing patterns

 Avoiding inappropriate Internet advice

 Practice!

 Better to have a series of snapshots of wait statistics over time

What are Waits?

 The term ‘wait’ means that a thread running on a processor cannot
proceed because a resource it requires is unavailable
 It has to wait until the resource is available

 The resource being waited for is tracked by SQL Server
 Each resource maps to a wait type

 Example resources that may be unavailable:
 A lock (LCK_M_XX wait type)

 A data file page in the buffer pool (PAGEIOLATCH_XX wait type)

 Results from part of a parallel query (CXPACKET wait type)

 A latch (LATCH_XX wait type)

Thread Scheduling

 SQL Server performs its own thread scheduling
 Called non-preemptive scheduling

 More efficient for SQL Server than relying on Windows scheduling

 Performed by the SQLOS layer of the Storage Engine

 Each processor core (whether logical or physical) has a scheduler
 A scheduler is responsible for managing the execution of work by threads

 Schedulers exist for user threads and for internal operations

 Use the sys.dm_os_schedulers DMV to view schedulers

 When SQL Server has to call out to the OS, it must switch the calling
thread to preemptive mode so the OS can interrupt it if necessary

Components of a Scheduler

 All schedulers are composed of three ‘parts’

 Threads transition around these until their work is complete

Thread States

 A thread can be in one of three states when being actively used as part of
processing a query

 RUNNING
 The thread is currently executing on the processor

 SUSPENDED
 The thread is currently on a Waiter List waiting for a resource

 RUNNABLE
 The thread is currently on the Runnable Queue waiting to execute on the processor

 Threads transition between these states until their work is complete

Transition: RUNNING to SUSPENDED

 A thread continues executing on the processor until it must wait for a
resource to become available
 The thread’s state changes from RUNNING to SUSPENDED

 The thread has been ‘suspended’ and moves to a Waiter List

Transition: SUSPENDED to RUNNABLE

 A thread continues to wait until it is told that the resource is available
 The thread’s state changes from SUSPENDED to RUNNABLE

 The thread moves to the Runnable Queue

 This is called being ‘signaled’

Transition: RUNNABLE to RUNNING

 The thread waits on the Runnable Queue until it is picked as the next
thread when the processor becomes available
 The thread’s state changes from RUNNABLE to RUNNING

 2019+: it might move to a different scheduler in the same NUMA node

Wait Times Definition

sys.dm_os_waiting_tasks DMV

 This DMV shows all threads that are currently suspended

 Think of it as the ‘what is happening right now?’ view of a server
 Usually very first thing to run when approaching a ‘slow’ server

 Most useful information this DMV provides:
 Session ID and execution context ID of each thread

 Wait type for each suspended thread

 Description of the resource for some wait types

 E.g. for locking wait types, the lock level and resource is described

 Wait time for each suspended thread

 If the thread is blocked by another thread, the ID of the blocking thread

 Show what’s the head of a blocking chain and can show
non-intuitive patterns

sys.dm_os_wait_stats DMV

 This DMV shows aggregated wait statistics for all wait types
 Aggregated since the server started or the wait statistics were cleared

 Think of this as the ‘what has happened in the past?’ view of a server

 Most useful information this DMV provides :
 The name of each wait type

 The number of times a wait has been for this wait type

 The aggregate signal and overall wait times for all waits for this wait type

 Some math is required to make the results useful
 Calculating the resource wait time

 Calculating the average times rather than the total times

What’s Relevant?

 An extremely important point to bear in mind is that waits ALWAYS occur
inside SQL Server
 Look for actionable items and filter out things like background tasks

 Filter out benign waits such as WAITFOR, LAZYWRITER_SLEEP

 Look at the demo code to see what I mean

 Need to identify the top, relevant waits and then drill in

 Example:
 1000 waits for LCK_M_S: Is it a problem?

 No, if that was over 8 hours, there were 10 million locks acquired, and total wait time
for the LCK_M_S locks was only 50s altogether

 Yes, if each wait was for 50s

Top Wait Types

 Survey results from 1700+ SQL Server instances across Internet

Source: my blog at https://sqlskills.com/p/083

https://sqlskills.com/p/083

PAGEIOLATCH_XX Wait and Solutions

 Waiting for a data file page to be read from disk into memory
 Common modes to see are SH and EX

 Do not assume the I/O subsystem or I/O path is the problem

 Further analysis:
 Determine which tables/indexes are being read

 Analyze I/O subsystem latencies with sys.dm_io_virtual_file_stats

 Move the affected data files to faster I/O subsystem?

 Correlate with CXPACKET waits, suggesting parallel scans

 Create appropriate nonclustered indexes and/or update statistics

 Examine query plans for parallel scans and implicit conversions

 Investigate buffer pool memory pressure and Page Life Expectancy

 If data volume has increased, consider increasing memory

PAGELATCH_XX Wait and Solutions

 Waiting for access to an in-memory data file page
 Common modes to see are SH and EX

 Do not confuse these with PAGEIOLATCH_XX waits

 Does not mean add more memory or I/O capacity

 Further analysis:
 Determine the page(s) that the thread is waiting for access to

 Classic tempdb contention?

 Add tempdb data files, enable trace flag 1118, reduce temp table usage

 2019 helps with this, including system tables in memory

 Analyze the table and index structures involved

 Excessive page splits occurring in indexes

 Insert-point hotspot in a clustered index with ever-increasing key

LCK_M_XX Wait and Solutions

 A thread is waiting for a lock that cannot be granted because another
thread is holding an incompatible lock

 Do not assume that locking is the root cause

 Further analysis:
 Follow blocking chain to see what the lead blocking thread is waiting for

 Use blocked process report to capture info on queries waiting for locks

 Michael Swart’s blog post (https://sqlskills.com/p/090)

 Lock escalation from a large update or table scan?

 Consider a different indexes, snapshot isolation, a different isolation level, or
locking hints

 Something preventing a transaction from releasing its locks quickly?

 E.g. synchronous DBM/AG, DTC, or log throughput problems

https://sqlskills.com/p/090

Demo: Insert hotspot and using the DMVs

WRITELOG Wait

 What does it mean:
 Waiting for a transaction log block buffer to flush to disk

 Avoid knee-jerk response:
 Do not assume that log file I/O system has a problem (can be the case)

 Do not create additional transaction log files

 Further analysis:
 Correlate WRITELOG wait time with I/O subsystem latency using

sys.dm_io_virtual_file_stats

 Look at average size of transactions and for extra log being generated

 Look at average disk write queue length for log drive

 If constantly 31/32 (111/112 on SQL 2012+) then the internal limit has
been reached for outstanding transaction log writes for a single database

WRITELOG Wait Solutions

 Move the log to a faster I/O subsystem

 Increase size of transactions to prevent many tiny log block flushes

 Remove unused nonclustered indexes to reduce logging overhead from
maintaining unused indexes during DML operations

 Check for incorrect CACHE size of SEQUENCE objects

 Change index keys or introduce FILLFACTORs to reduce page splits

 Investigate whether synchronous database mirroring/AGs/SAN
replication is introducing delays

 Potentially split the workload over multiple databases or servers

 SQL Server 2014: delayed durability and In-memory OLTP

CXPACKET Wait Explanation

 What does it mean:
 Parallel operations are taking place

 Accumulating very fast implies skewed work distribution amongst threads or one of
the workers is being blocked by something

 Avoid knee-jerk response:
 Do not set server-wide MAXDOP to 1, disabling parallelism

 Further analysis:
 Correlation with PAGEIOLATCH_SH waits? Implies large, parallel scans

 Examine CXPACKET query plan to see if the query plans make sense

 Are there non-zero ID threads showing CXPACKET wait?

CXPACKET Wait Example (1)

CXPACKET Wait Example (2)

CXPACKET Wait Solutions

 Possible root-causes:
 Just parallelism occurring

 Table scans because of missing nonclustered indexes or incorrect query plan

 Out-of-date statistics or cardinality issue causing skewed work distribution

 If there is actually a problem:
 Make sure statistics are up-to-date and appropriate indexes exist

 MAXDOP for a query? Or just a database (in 2016+)? Or Resource Governor?

 MAXDOP for the instance? Test to figure out best value for *you*:
 No NUMA then = # logical cores, up to max of 8

 NUMA = # logical cores per NUMA node, up to 16 (2016+) or 8 (< 2016)

 General guidance, soft-NUMA complicates this

 Set ‘cost threshold for parallelism’ higher to avoid parallel plans
 Jon’s blog post at https://sqlskills.com/p/094 provides a guestimate

https://sqlskills.com/p/094

Demo: Parallelism

ASYNC_NETWORK_IO Wait

 What does it mean:
 SQL Server is waiting for a client to acknowledge receipt of sent data

 Avoid knee-jerk response:
 Do not assume that the problem is network latency

 Further analysis:
 Analyze client application code, client app server, network latencies

 Possible root-causes and solutions:
 Usually poorly-coded application that is doing RBAR (Row-By-Agonizing-Row)

 Very easy to show using a large query and SSMS on same machine as SQL Server

 Could be from using MARS with large result sets or BCP inbound

 Also look for network issues, incorrect duplex settings, or TCP
chimney offload problems (see https://sqlskills.com/p/102)

https://sqlskills.com/p/102

OLEDB Wait

 What does it mean:
 The OLE DB mechanism is being used

 Avoid knee-jerk response that problem is linked servers

 Further analysis:
 What are the queries doing that are waiting for OLEDB?

 If linked servers are being used, what is causing delay on linked server?

 Possible root-causes:
 DBCC CHECKDB and related commands use OLE DB internally

 Many DMVs use OLE DB internally so it could be a third-party monitoring tool that is
repeatedly calling DMVs (especially if they’re very short waits)

 Poor performance of a linked server

Summary: Methodology

 Gather information about exactly when the performance problem arose
and the user-visible characteristics of the problem

 Gather information about what changed before the problem arose

 Examine the output from sys.dm_os_waiting_tasks
 What is happening on the server right now?

 Examine the output from sys.dm_os_wait_stats
 What has happened in the past?

 Look at the top 3-4 relevant waits

 Avoid temptation to knee-jerk and equate symptoms with root-cause

 Gather further information from relevant sources
 DMVs, query plans, performance counters, code analysis

Resources

 Comprehensive waits/latches library: https://www.SQLskills.com/helps/waits

 Whitepapers:

 SQL Server Performance Tuning Using Wait Statistics: A Beginners Guide

 https://sqlskills.com/p/103

 Diagnosing and Resolving Latch Contention on SQL Server

 Diagnosing and Resolving Spinlock Contention on SQL Server

 Gnarly links – see our whitepapers page at https://sqlskills.com/p/104

 Blog post categories

 https://www.sqlskills.com/blogs/paul/category/wait-stats/ /latches/ /spinlocks/

 Pluralsight: SQL Server: Performance Tuning Using Wait Statistics

https://www.sqlskills.com/helps/waits
https://www.sqlskills.com/helps/waits
https://sqlskills.com/p/103
https://sqlskills.com/p/104
https://www.sqlskills.com/blogs/paul/category/wait-stats/
https://www.sqlskills.com/blogs/paul/category/wait-stats/
https://www.sqlskills.com/blogs/paul/category/wait-stats/

Thank you!
Questions? Paul@SQLskills.com

