


Analysis Services DevOps using
Tabular Editor,

git and Azure DevOps

Daniel Otykier / Kapacity



Session scope

Tabular models and Source Control (git)

Topic branches and workflows

Dealing with conflicts

Automated builds (Azure DevOps)

Automated unit tests (Azure DevOps)*

Automated deployment (Azure DevOps)

Continuous Integration (Combining all of the above)

*Not covered in this talk



Motivation (why DevOps?)

Work simultaneously on multiple features

Work in teams of developers

Support multiple environments

Avoid merge conflicts / manual merging headaches

Enforce code review processes (“pull requests”)

Automate testing and avoid regressions

Easier and more consistent deployments



Demo



Getting started



Prerequisites

Tabular Editor
setx PATH "%PATH%;C:\Program Files (x86)\Tabular Editor\"

Instance of Analysis Services

Azure DevOps account

Local installation of Git (included with Visual Studio)



“Save to Folder” + Git = 

Save to Folder
Split model into smaller files

Remove timestamps and inferred metadata

No metadata ordering conflicts

Git
Uses directory snapshots

no need to manually “include” items like in TFVC

Prefers many small files over few big files

Combine features and resolve conflicts using standard diff tools, 
instead of specialized tools for Tabular Models (BISM Normalizer)



Step 1) Prepare your Tabular Model metadata

Load your Model.bim file in 
Tabular Editor

(alternatively) Load your model
from an existing database

Go to File > Preferences > 
“Current Model”

Ensure settings are as seen on 
the right

Save the model using File > 
Save as Folder...



Step 2) Set up your Git repository

One or multiple Git repositories? (Discussion)

For demo purposes:

Use default repository in new Azure DevOps project...

...or create a new repository in existing project

Add a “VisualStudio” .Gitignore file

Many ways to add your Tabular Model metadata to Git:

“Upload files” within the Web UI, then clone to a new local 

repository (note: doesn’t support Folder upload)

Clone the repository, add the files locally, commit and push

Init local repository, add remote, add files, commit and push

Use Git commandline or Visual Studio (“Open folder”) if 

preferred



Step 3) Determine branching strategy

https://git-scm.com/book/en/v1/Git-Branching-Branching-
Workflows

One possible approach:
MASTER = Production DB

NEXT = Test DB

TOPIC1 = New feature 1

TOPIC2 = New feature 2

...

Each topic = Separate workspace DB

MASTER
Deployment 1 Deployment 2

TOPIC3

TOPIC1

TOPIC2

NEXT
Hotfix

Scrapping
feature 1

https://git-scm.com/book/en/v1/Git-Branching-Branching-Workflows


Step 4) Create build pipelines

Download and configure build agent if requiring access to on-prem 

ressources

(Otherwise, may use Hosted Agent pools)

Build agent SA needs admin access to SSAS instance (unless you specify
credentials when connecting)

Build pipelines are extremely flexible! They can do ANYTHING!

...but with great power, comes great responsibility! Just because you could 
doesn’t mean you should...



Daily workflow



Typical daily workflow (after feature branch creation)

Merge from TEST to your Feature branch and deploy to DEV DB

Open your DEV DB in Tabular Editor and work work work...

Hit CTRL+S to save to the DEV DB, and test your changes in Excel / Power 
BI / SSMS

Periodically use “Save to Folder...” to save your work into the current
working directory

Consider committing to Git as well (frequent commits are a GOOD thing!)

Might as well push to Azure DevOps, so that you don’t lose any work if your laptop 
is stolen/goes into perpetual BSOD/takes a brick to the face/etc... 

When the feature is done, pull request into the TEST branch



Dealing with conflicts

May occur when merging from TEST into your current Feature

branch

I.e. someone else changed something related to what you’re currently
working on

Easiest to do within Visual Studio



Advanced patterns



Master Model Pattern

Useful when maintaining 2+ models with a reasonable amount of 

functional overlap, such as:

Shared dimensions

“Process once”-scenarios

Repeated complexity

Helps consolidate your code base

https://Github.com/otykier/TabularEditor/wiki/Master-model-

pattern



Automated deployment

Create “Release definition” based on a Build definition

Define stages, for example: Test, Pre-prod, Prod

For each stage, define deployment tasks (similar to build pipeline)

Use variables!

Can be set to “sensitive” for connection strings, passwords, etc.



Continuous integration

Set up triggers on build- and release pipelines for end-to-end

automation

For example:

After every commit, run BPA, SchemaCheck and deploy to build server

Run unit tests

If all succeeds, deploy to test server and inform stakeholder

If stakeholder approves, deploy to prod



Conclusion

You need Tabular Editor!

You need Git

You need Azure DevOps

Command-line scripts are oldschool cool

Next steps:
Unit testing using PowerShell or NBI

CI/CD for your Tabular data source

Blog series coming soon: 
https://tabulareditor.github.io/2019/02/20/DevOps1.html

https://tabulareditor.github.io/2019/02/20/DevOps1.html


Thank you!






