
11 years experience with SQL Server doing OLTP and
data warehousing / BI, now working with Azure data
platform

Niall Langley
Data Developer / Consultant

Blog: https://www.sqlsmarts.com

LinkedIn: https://uk.linkedin.com/in/niall-langley

Twitter: @NiallLangley

SQL Server
Encryption for
the Layman

Introduction

•What is encryption
• Overview of types of encryption
•What do we want to protect
• How can SQL Server encrypt our data
• How else can we protect data in SQL server
• Summary

What is Encryption?

• SQL Server Encryption web page definition

• Encryption can make the data useless without the corresponding
decryption key or password
• Encryption does not solve access control problems
• What do we need to encrypt?

“Encryption is the process of obfuscating data by the use of a
key or password”

Why do we Need to Encrypt Data?

• GDPR Compliance
• Personally Identifiable Information
• Fines for losing data are significant

• PCI Compliance
• Sensitive data or documents
• Losing data causes reputation damage
• Management who want to encrypt everything
• Reaction to a data loss incident

What do we want to Protect

• Data at Rest
• Data files, log files, backups
• Protect against losing copies of these

• Data in Transit
• We don’t want data to be “sniffed” as it travels over the network
• What is your application architecture?

• Data from Sysadmins (DBA’s)
• Super users can see all data
• Segregation of duties, can administer a server without access to sensitive data

Types of Encryption

• Symmetric Key Algorithms
• AES, DES, Blowfish…

• Asymmetric Key Algorithms
• RSA, Diffie–Hellman key exchange

• Cryptographic Hash Algorithms
• MD5, SHA1…

• Same key used to encrypt and decrypt the data

• Typically based on block cyphers
• Data is broken into blocks smaller than or equal to the key length
• Iterate through the blocks transforming using the XOR logical operator with

key to encrypt or decrypt
• XOR is simple, and therefore fast

Symmetric Key Algorithms

Secret KeySecret Key

Asymmetric Key Algorithms
• Also know as Public Key Cryptography
• Uses two keys generated as a pair

• Public one to encrypt data
• Private one to decrypt data

• Typically based on trapdoor functions
• RSA based on the factorization of the product of two prime numbers

• Asymmetric key algorithms tend to be slower than symmetric key
algorithms
• Typically used for securing communication between two parties
• Certificates are based on Asymmetric Key Algorithms

Asymmetric Key Algorithms

Niall

John

Niall’s Public Key

John’s Public Key

Step 1 – Public Key Exchange

Asymmetric Key Algorithms

Niall

John’s Public Key

John

Niall’s Public Key

Niall’s Private KeyJohn’s Public Key

Step 2 – Niall Encrypts Data, Signs it, and Sends it to John

Asymmetric Key Algorithms

John

Niall’s Public Key
John’s Private KeyNiall’s Public Key

Step 3 – John Verifies the Data is from Niall, then
Decrypts it Using his Private Key

Cryptographic Hash Algorithms

• Produce a fixed length output from a variable length input
• Should be easy to calculate a hash for input data
• Should be extremely difficult to derive the input text from the output

• One way functions
• Should have a very low chance two different inputs will produce the

same output hash value
• Used to message integrity checks, digital signatures and

authentication

So what are they for?

• Symmetric key encryption is typically used to:
• Protect data
• Protect asymmetric private keys at rest using a password

• Asymmetric key encryption is typically used to:
• Protect symmetric keys in transit between parties
• Create certificates used to protect data and verify the identity of third parties

• Cryptographic Hashes are typically used to:
• Verify data and create digital signatures
• Authentication by hashing passwords so they are not plaintext

SQL Server Encryption Hierarchy

• The Database Master Key is
protected by a password, and
optionally the Service Master Key
• This abstracts having to know the

password to unlock a certificate or
key away
• SQL Server permissions are used to

grant access to encryption keys
• Public key - VIEW DEFINITION
• Private key - VIEW DEFINITION

and CONTROL

Certificates in SQL Server

• We can create, import or export them

• SQL Server uses x509 certificates

• Lots of utilities to create these

• Not required to be CA signed, or in date for securing data

• They are added to a specific database
• SQL 2012 added support for import and export from binary blob

• SQL Server permissions are used to grant access to encryption keys
• Public key - VIEW DEFINITION
• Private key - VIEW DEFINITION and CONTROL

SSL - Data in Transit

• From SQL Server 2000 onwards
• Secures data in transit between server and client
• No code changes
• Self signed certificates can be used, but not advised

• Risk of Man-in-the-Middle attack
• Organisation Root CA certificates can be used to sign the server cert is

installed on clients
• If the SQL Server is firewalled well, can be simpler to setup SSL on the

router in front of it
• This works really well for SSRS!

Column / Row Level Encryption – Data at Rest
• From SQL Server 2005 onwards
• Requires code changes, some queries not SARGable any more

• SQL Server encryption functions

• SQL 2016 only AES_128, AES_192, and AES_256 are supported
• Data is protected from users without permissions
• Sysadmins always have control on the certificates and keys, so can access

the data

ENCRYPTBYPASSPHRASE DECRYPTBYPASSPHRASE

ENCRYPTBYKEY DECRYPTBYKEY DECRYPTBYKEYAUTOASYMKEY DECRYPTBYKEYAUTOCERT

ENCRYPTBYASYMKEY DECRYPTBYASYMKEY

ENCRYPTBYCERT DECRYPTBYCERT

Transparent Data Encryption (TDE) – Data at Rest

• From SQL Server 2008 onwards
• No code changes
• Protects data at rest, data files, log files and backups

• But not FILESTREAM

• Only way to encrypt a backup on 2008
• Until 2016, no backup compression

• Uses a server level certificate to protect the database encryption key
• Need the certificate to restore backups to another server

• If you restore prod to dev, your prod certificate will be on dev!

Backup Encryption – Data at Rest

• From SQL Server 2014 onwards
• Similar to TDE backup encryption, we can use a certificate or

symmetric key
• Certificate or key must be available on server to restore an encrypted

backup
• 2016 added compression support, but there are bugs in the RTM

release
• Make sure you are on the right CU
• https://www.brentozar.com/archive/2016/07/tde-backup-compression-

together-last/

https://www.brentozar.com/archive/2016/07/tde-backup-compression-together-last/

Always Encrypted

• From SQL Server 2016 onwards
• End-to-end Encryption of individual columns

• Data protected at rest, in transit and from sysadmins
• Data is decrypted at the client

• Column master keys are stored in an external key store
• Windows Certificate Store
• Azure Key Vault
• Hardware Security Module

• Column encryption keys are encrypted with the column master key
and stored in the database

Always Encrypted
SELECT *
FROM employees
WHERE ssn = ‘198-33-0987’

SELECT *
FROM employees
WHERE ssn = 0x7ff654ae6d

Enhanced
ADO.NET

Library

plaintext Cyphertext & Column
Encryption Keys

Column Master Keys

• Windows Certificate Store
• Azure Key Vault
• Hardware Security Module

Always Encrypted
• Two Encryption Types

• Deterministic - Always has same encrypted value for given plain text value

• Randomized – Less predictable values, but doesn’t support equality joins,

indexing, lookups or grouping

• Code changes are required

• Column collation must be Latin1_General_BIN2

• Inequality predicates not supported

• Some datatypes not supported – XML, IMAGE, SQL_VARIANT, etc.

• https://www.red-gate.com/simple-talk/sql/database-administration/sql-

server-encryption-always-encrypted/

• Requires a new enough version of the client driver

Encrypting Passwords

• Common in data leaks is a list of usernames and passwords
• Biggest list found in 2018 was 770 Million usernames with passwords

• Passwords should be salted hashes, computed on the client
• Algorithm choice is key – 8 x High end graphic cards

• MD5 - 200 Billion hashes per second
• SHA1 – 69 Billion hashes per second
• bcrypt (work factor 5) – 105 Thousand hashes per second
• https://gist.github.com/epixoip/a83d38f412b4737e99bbef804a270c40

• Talk to your developers and understand their choices
• https://arstechnica.com/information-technology/2013/03/how-i-became-

a-password-cracker/

https://gist.github.com/epixoip/a83d38f412b4737e99bbef804a270c40

Dynamic Data Masking

• SQL Server 2016 onwards

• Not actually encryption

• Requires simple code changes

• Results are returned with some data masked out

• Data can be read by sysadmins

• Permissions

• Is susceptible to brute force attacks

• We can infer the data of a column by filtering the masked data using a where

clause

• https://sqlsunday.com/2018/02/05/an-alternative-to-data-masking/

Summary

• Know what you need protect
• At rest, in flight, from sysadmins
• Types of data PII, sensitive data, specific data for compliance

• Understand trade-offs
• Performance impact
• Ease of use
• Code / architecture changes

• Protect and backup keys
• Don’t be the DBA in a DR situation with good backups but no keys!

Summary
SQL Server

Version
Data at Rest Data in Transit Data from

Sysadmins
Data from

unprivileged
users

Requires Code
Changes

SSL 2000

Column / Row
Level Encryption 2005

Transparent Data
Encryption (TDE) 2008

Backup
Encryption 2014

Always Encrypted 2016

Hashing
Passwords N/A – Client Side

Dynamic Data
Masking 2016

