

Specialties / Focus Areas / Passions:
• Performance Tuning & Troubleshooting
• Very Large Databases
• SQL Server Storage Engine
• HA/DR
• Cloud

@sqlbob
bob@bobpusateri.com
heraflux.com
bobpusateri

We were developing an IoT system

…Which needed to ingest data from thousands/millions of devices

… and that data needed to be queried within seconds?

We were building an e-commerce site

Which needed guaranteed performance and availability

… anywhere on Earth

… and needed to be able to scale up/down in response to conditions?

A globally distributed, massively scalable, multi-model database service

A globally distributed, massively scalable, multi-model database service

A globally distributed, massively scalable, multi-model database service

A globally distributed, massively scalable, multi-model database service

Key-Value GraphColumn-Family Document

A globally distributed, massively scalable, multi-model database service
Has multiple APIs as well

Table API

MongoDB

Coming Soon: ANSI SQL

A database service featuring an engine built to excel at several things, but
especially:

Partitioning
Replication

It’s a NoSQL offering!
3 DBAS WALKED INTO

A NOSQL BAR….

A WHILE LATER THEY
WALKED OUT BECAUSE THEY

COULDN’T FIND A TABLE

• I often hear NoSQL == No Schema == No Design
 Not True

• GENERALLY NoSQL schemas
 Do Exist
 Are somewhat enforced by the database
 Are fully enforced by the application

• There are still design decisions that need to happen early on
 (And if they’re wrong you will pay for it later)

• Microsoft started having problems with internal large scale apps
 2010 – “Project Florence”
 2014 – Azure DocumentDB
 2017 – Azure Cosmos DB

• MS leverages this internally
• Designed for the cloud
• One of the fastest-growing

services on Azure
https://tinyurl.com/ycmhp6kd

• We’re developing an internal app for a global company
• Thousands of users reading/updating data
• How would we architect this?

• Cosmos DB is a Foundational Azure service
• Put your data where the users are
• Replication between regions is automatic
• Multi-homing APIs
 Clients automatically connect to the nearest region

• Adding or removing regions? No code changes!
• Manual or automatic failovers
• Designed from the ground up for HA

• Both storage and throughput can be scaled transparently
• A single machine is never a bottleneck
• Collections can scale from GB to PB across many machines and regions

• Requests are served from the nearest region
• Database engine optimized for writes, latch-free
• Indexing is synchronous and automatic
• Single-digit millisecond read latency at 99th Percentile

Reads (1KB) Indexed Writes (1KB)

50th Percentile < 2ms < 6ms

99th Percentile < 10ms < 15ms

• 99.99% availability when in a single region
• 99.999% availability in multiple regions
• Highly-redundant storage architecture
• Automatic or manual failover

• All data is encrypted, period.
• In transit and at rest

• Two types of keys:
• Master Keys
 Administrative
 Grant access to the entire account (not granular)
 Read-write and Read-only

• Resource Tokens
• Used for application resources (Containers, docs, SPs, Triggers, UDF, etc.)
 Kinda like SQL Permissions

• Tokens are specific to {user, resource, permission}
• Tokens are time-sensitive (default 1 hour, max 5 hours)

• Resource Tokens

DIRECT ACCESS

Server

Object

Instance

Database

Account

Item

Database

Container

Account

Item

Database

Container

Account

Item

Database

Container

• Containers
• Users
• Permissions

Account

Item

Database

Container

• Data Model
• Document (Collection)
• Graph
• Key-Value
• Column-Value

• Throughput

Account

Item

Database

Container

• Data Model
• Document (Collection)
• Graph
• Key-Value
• Column-Value

• Throughput

ATOM RECORD SEQUENCE (ARS) SYSTEM

Atoms = primitives (string, bool, etc)
Records = structs of atoms
Sequences = arrays of {atom, record, sequence}

Cosmos DB translates & projects all data models
into an ARS model

Account

Item

Database

Container

Account

Item

Database

Container

• Depends on data model
• Document
• Node/Edge
• Row/Item

• Stored Procedures
• Triggers
• UDFs

Image: Microsoft

 RU is the rate-based currency of Cosmos DB
 Represents a combination of CPU, Memory, and IO
 1 RU = 1 read of 1KB
 Every request is assigned a “cost” in RUs
 Reads, writes, stored procedures, etc

 Provisioned in units of RU/second
 Can be changed at any time; metered hourly
 Exceeding your RU budget = rate limiting
When inactive, background tasks run
 Index Maintenance
 TTL Expiration

Min RU/sec

Max RU/sec

Re
qu

es
t R

at
e

Rate
Limiting

No
Limiting

Replica
Inactive

• Define boundary values between partitions
• Map partitions to physical locations (filegroups)
• Similar values generally in the same partition
 Can lead to “hot” partitions
 Especially if on dates

• Partition management is manual
• Hard Limit: 15.000 partitions per table

• There are no “ranges”, every partition key is hashed
• Logical partitions (keys) are spread across physical partitions
• Partition management is automatic!
• No limit on number of partitions
• Hard limit: 10GB max of data per partition key

• The most important design decision in Cosmos DB
• Has a direct effect on
 How well it will scale
 How much you will pay

• Think through partitioning during the design phase, it’s easier!

Partition Key: User ID

Cosmos DB Container

Partition Key: User ID

hash(User ID)

Pseudo-random data distribution of hash values

hash(User ID)

Chase

Ryder

Tracker

Cap’n Turbot

Everest
Skye

Rocky

Rubble

Zuma

Marshall

Robo-Dog

hash(User ID)

Chase

Ryder

Tracker

Cap’n Turbot

Everest
Skye

Rocky

Rubble

Zuma

Marshall

Robo-Dog
Physical
Partition

Logical
Partition

hash(User ID)

Chase

Ryder

Tracker

Cap’n Turbot

Everest
Skye

Rocky

Rubble

Zuma

Marshall

Robo-Dog

What happens when it needs to grow?

Tracker

Cap’n Turbot

Skye

Rocky

Robo-Dog

hash(User ID)

Tracker

Cap’n Turbot

Robo-Dog

Skye

Rocky+

Partitions can be dynamically subdivided
to grow the database without affecting
availability

This is done automatically.

• Plan to distribute both request and storage volume
 Remember the 10GB limit
 Adding dates after partition values can help with this

• For greatest efficiency, queries should eliminate partitions
• Queries can be routed/filtered via partition key
• “Fan-Out” is something to try to avoid where possible

• Understand your workload!
• Understand the most frequent/expensive queries
• Understand insert vs update ratios
• Remember partition keys are logical!
 Don’t be afraid of having too many
 More key values = better scalability

• This is huge because we have multiple replicas
• If a change is replicated, what is seen elsewhere?
• Why replicate, anyway?
 HA – multiple copies for failover
 Speed!

• Bring the data closer to the user
• “cheat” the speed of light!

Image: Microsoft

North Central US

UK South

Japan East

• I love consistency models
• I also love isolation levels

• Azure Cosmos DB has 5 of them
• You can choose what gets prioritized
• Can be overridden on a per-request basis

Bounded
Staleness

Strong Consistent
Prefix

Session Eventual

• Linearizability guarantee: reads will always return the most recent version
of an item

• (Like SERIALIZABLE [maybe?])
• Writes are only visible after committed by a majority quorum of replicas

Bounded
Staleness

Strong Consistent
Prefix

Session Eventual

• Guarantees that “absence of any further writes, replicas will eventually
converge”

• No guarantee of order
 Client may get “new” values older than ones it had previously seen

• Lowest latency for reads and writes
 …but it’s fast!

Bounded
Staleness

Strong Consistent
Prefix

Session Eventual

• Guarantees that readers will always see writes in order

Bounded
Staleness

Strong Consistent
Prefix

Session Eventual

• Scoped to a client session
 There’s a session key that is passed around

• Provides predictable consistency within a session
 Monotonic reads & writes
 Guarantee that you can read your own writes immediately

• Great predictability for your session, good performance for everyone else

Bounded
Staleness

Strong Consistent
Prefix

Session Eventual

• Define a “window” of staleness in terms of # revisions or time
• If a replica gets too far behind (is outside the “window”)
 Cosmos DB will prioritize consistency over all else
 May even rate limit writes until stale replica catches up

Bounded
Staleness

Strong Consistent
Prefix

Session Eventual

• What if you’re not doing geo-replication? Does this matter?
• Yes it does!
• Even in local regions there are still 4 replicas of your database

1
2 3

4

• Yeah, about that….

• Schema-agnostic
• Automatic
 Every property of every record is indexed by default
 No latches involved (remember it’s highly write-optimized)

• Customizable
 You can define what is indexed (and save space)

{ "cars": [
{ "make": "Hyundai", "model": "Santa Fe" },
{ "make": "Subaru", "model": "Forester", “plate": "T SQL" }

],
"city": "Chicago"

}

city

Chicago0 1

make model make model license

cars

Hyundai Santa Fe Subaru Forester T SQL

{ "cars": [
{ "make": "Tesla", "model": "X" }

],
"city": “Oslo"

}

city

Oslo0

make model

cars

Tesla X

city

Chicago0 1

make model make model license

cars

Hyundai Santa Fe Subaru Forester T SQL

Oslo

{1,2}

{1,2}{1,2}

{1} {2}{1,2} {1}

Tesla X

{1,2} {1,2}

{1} {1}{2} {2} {1} {1} {1}

{1} {1}{1}

Term Postings

$/cars/0 1,2

$/cars/0/make 1,2

$/cars/0/model 1,2

$/cars/1 1

……

• Remember what I said about indexes?

• Backups are automatic
• Snapshots taken and stored separately in Azure Blob Storage
• For speed, it’s written to same region as current Cosmos DB write region
• For safety, it’s replicated to another region as well

• Taken every 4 hours
• Only the last 2 snapshots are retained
• “If the data is accidentally dropped or corrupted, contact Azure support

within eight hours.”
• You can maintain your own backups
 Azure Cosmos DB Data Migration Tool “export to JSON” option

• If you delete a container/database, backups retained for 30 days

https://docs.microsoft.com/en-us/azure/cosmos-db/use-cases

• You Pay For:
 Storage £0.1864 per GB/month
 Throughput (single region writes): £4.3527 per 100 RU/sec
 Throughput (multiple region writes): £8.7053 per 100 RU/sec
 Data Transfer for geo-replication (varies by region)

 UK South: £0.065per GB
 Reserved Capacity can offer additional savings

• ***Check Azure Portal for most current pricing info
• https://azure.microsoft.com/en-us/pricing/details/cosmos-db/

https://azure.microsoft.com/en-us/pricing/details/cosmos-db/

• There’s a Cosmos DB Emulator!
• Run locally on your machine for free
• https://docs.microsoft.com/en-us/azure/cosmos-db/local-emulator

https://docs.microsoft.com/en-us/azure/cosmos-db/local-emulator

• There’s a Cosmos DB Emulator!
• Run locally on your machine for free
• https://docs.microsoft.com/en-us/azure/cosmos-db/local-emulator

https://docs.microsoft.com/en-us/azure/cosmos-db/local-emulator

• Azure Cosmos DB 30 day Trial
• You can renew this unlimited times!
• Can globally distribute it to up to 3 regions
• “Use any of the capabilities Azure Cosmos DB provides for 30 days”
• After that, you can renew and load your data again
• https://azure.microsoft.com/en-us/blog/try-azure-cosmosdb-for-30-days-

free-no-commitment-or-sign-up/

https://azure.microsoft.com/en-us/blog/try-azure-cosmosdb-for-30-days-free-no-commitment-or-sign-up/

94

@sqlbob

bob@bobpusateri.com

bobpusateri.com

bobpusateri

	Select Stars:�A SQL DBA’s Introduction�to Azure Cosmos DB
	About Bob Pusateri
	Slide Number 3
	What if…
	What if…
	How Would We Manage The Data?
	Agenda
	Slide Number 8
	What Is Azure Cosmos DB?
	What Is Azure Cosmos DB?
	What Is Azure Cosmos DB?
	What Is Azure Cosmos DB?
	What Is Azure Cosmos DB?
	What Is Azure Cosmos DB?
	What Is Azure Cosmos DB?
	What Is Azure Cosmos DB?
	History of Azure Cosmos DB
	Another Scenario
	Solution: SQL Server
	Solution: SQL Server
	Solution: Cosmos DB
	Solution: Cosmos DB
	Slide Number 23
	Fast Data Distribution
	Elastically Scalable
	Guaranteed Low Latency
	Guaranteed Availability
	What do these guarantees mean?
	Encryption
	Permissions
	Permissions
	Permissions
	Slide Number 33
	Resource Model
	Resource Model
	Resource Model
	Resource Model
	Resource Model
	Resource Model
	Resource Model
	System Architecture
	Request Units
	Request Units
	Slide Number 44
	Partitioning in SQL Server
	Partitioning in Cosmos DB
	Partitioning
	Partitioning
	Partitioning
	Partitioning
	Partitioning (Physical Partition Sets)
	Partitioning (Physical Partition Sets)
	Partitioning (Physical Partition Sets)
	Partitioning (Physical Partition Sets)
	Choosing A Good Partition Key
	Choosing A Good Partition Key
	Slide Number 57
	Consistency
	Consistency: Containers and Replicas
	Consistency: Replica Sets
	Consistency: Replica Sets
	Consistency: Models
	Consistency Models
	Consistency Models: Strong
	Consistency Models: Eventual
	Consistency Models: Consistent Prefix
	Consistency Models: Session
	Consistency Models: Bounded Staleness
	Consistency Models
	Consistency Models
	Slide Number 71
	Indexing
	Indexing
	Indexing
	Indexing
	Indexing
	Indexing
	Indexing
	Indexing
	Indexing
	Indexing
	Slide Number 82
	Backups
	Backups
	Backups
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Cosmos DB Pricing
	Wanna Play For Free?
	Wanna Play For Free?
	Wanna Play For Free in the Cloud?
	Slide Number 93
	Questions?

