
www.sqlbi.com

DAX Best Practices

Marco Russo
marco@sqlbi.com

We write

Books
We teach

Courses
We provide

Consulting
We are recognized

BI Experts
Remote
Consulting

Power BI/SSAS
Optimization

BI Architectural
Review

On-Site
Consulting

Custom Training
& Mentoring www.sqlbi .com

DAX Best Practices

o Naming convention

o Use variables

o Errors are good

o FILTER vs. CALCULATE and complex filter conditions in
calculated columns

o Beware of bidirectional filters

o Avoid context transition large iterators

Naming convention
o Never use table names for measure references

• Use [Total Sales] instead of Sales[Total Sales]
• Measure reference: [measure]

o Always use table names for column references
• Use Sales[Quantity] instead of [Quantity]
• Even in the definition of a calculated column

referencing columns in the same table
• Column reference: ‘table’[column]

o https://www.sqlbi.com/articles/rules-for-dax-code-formatting/
o https://www.sqlbi.com/articles/duplicated-names-in-dax/

Naming Convention
Demo

Use variables everywhere
o Improve code readability

• Reduce nested calls
• Make the code more «procedural» and less «functional»
• Remove EARLIER

o Improve performance
• Variables are evaluated only once
• Avoid double evaluation of the same expression

https://www.sqlbi.com/articles/variables-in-dax/
https://www.sqlbi.com/articles/dax-coding-style-using-variables/

Use variables
Demo

Improve code readability

TaxedSales :=
SUMX (

Sales,
Sales[Quantity] * Sales[Unit Price] * (1 + Sales[Tax Percentage])

)

Improve code readability
TaxedSalesExplained :=
SUMX (

ADDCOLUMNS (
ADDCOLUMNS (

ADDCOLUMNS (
Sales,
"LineAmount", Sales[Quantity] * Sales[Unit Price]

),
"Taxes", [LineAmount] * Sales[Tax Percentage]

),
"TaxedAmount", [LineAmount] + [Taxes]

),
[TaxedAmount]

)

Improve code readability

TaxedSalesVariables :=
SUMX (

Sales,
VAR LineAmount = Sales[Quantity] * Sales[Unit Price]
VAR Taxes = LineAmount * Sales[Tax Percentage]
VAR TaxedAmount = LineAmount + Taxes
RETURN

TaxedAmount
)

Improve performance

Average Positive Balances :=
AVERAGEX (

Customer,
IF (

[Balance] > 0,
[Balance]

)
)

Improve performance

Average Positive Balances :=
AVERAGEX (

Customer,
VAR CustomerBalance = [Balance]
RETURN

IF (
CustomerBalance > 0,
CustomerBalance

)
)

Errors are good
o Show an error when the calculation is not safe

• A report that is not working makes people angry
• A report providing wrong numbers will get you fired

o Do not use IFERROR
• Hiding errors could be a bad idea

o Use ERROR to provide better error description
• Constant string, cannot be dynamic
• Should make it easier to understand where is the issue in data

Errors are good
Demo

Avoid IFERROR

Estimated Quantity :=
IFERROR (

[Sales Amount] / VALUES (Product[Unit Price]),
BLANK ()

)

Avoid IFERROR

Estimated Quantity :=
DIVIDE (

[Sales Amount],
SELECTEDVALUE (Product[Unit Price])

)

Avoid IFERROR

Estimated Quantity :=
IF (

COUNTROWS (VALUES (Product[Unit Price])) > 1,
ERROR ("More than one Unit Price selected"),
IF (

VALUES (Product[Unit Price]) = 0,
ERROR ("Unit Price is zero or not available"),
[Sales Amount] / VALUES (Product[Unit Price])

)
)

Avoid IFERROR

Estimated Quantity :=
VAR UnitPrice = VALUES (Product[Unit Price])
RETURN IF (

COUNTROWS (UnitPrice) > 1,
ERROR ("More than one Unit Price selected"),
IF (

UnitPrice = 0,
ERROR ("Unit Price is zero or not available"),
[Sales Amount] / UnitPrice

)
)

Complex
filter conditions

Demo

Complex filter conditions
o Apply filters using CALCULATE/SUM instead of SUMX/FILTER

• DAX can optimize simple conditions
• Complex conditions requires some iterator

o Use column filters rather than table filters
• Use ALL with multiple columns for same table OR conditions
• Use CROSSJOIN with multiple columns for different tables OR

conditions
• Use KEEPFILTERS rather than VALUES

o Consider calculated column to persist the result of complex
condition
• The condition must be static and not dynamic
• The result of the condition should have a low granularity (e.g.

true/false)

Beware of bidirectional filters
Demo

Beware of bidirectional filters
o Use bidirectional filter only when necessary

• Use CROSSFILTER instead of bidirectional filter whenever
possible

• Only use bidirectional filter in the data model when fact
tables are reacheable only on one side of the relationship

o Unexpected behavior with bidirectional filter
• Paths using single direction filters wins over bidirectional

filters when ambiguity is involved
• USERELATIONSHIP can create ambiguity that would not be

accepted in the data model. In this case, the ambiguity is
solved by applying the shortest path rule

Context transition
Demo

Avoid context transition in large iterators

o Context transition is expensive
• Materialization of uncompressed data required
• One of the common source of performance issues

o Context transition could provide unexpected result
• Tables without primary key will aggregate identical rows
• Classical error: aggregation of context transition produces

inflated results
o Avoid context transition in iterators or tables without

primary key

Recap

o Naming convention

o Use variables

o Errors are good

o FILTER vs. CALCULATE and complex filter conditions in
calculated columns

o Beware of bidirectional filters

o Avoid context transition large iterators

Just like Jimi Hendrix …

We love to get feedback

Please complete the session feedback
forms

SQLBits - It's all about the community...

Please visit Community Corner, we are trying this year to get
more people to learn about the SQL Community, equally if
you would be happy to visit the community corner we’d
really appreciate it.

Thank you!

Check our articles, whitepapers and courses on

www.sqlbi.com

