BRENT OZAR

UNLIMITED®

Improving SELECT * Query Performance

Just like Jimi Hendrix ...

We love to get feedback

Please complete the session
feedback forms

SQLBIts - It's all about the community...

Please visit Community Corner!

This year we’re trying to get more people to learn about the SQL

Community, equally if you would be happy to visit the community
corner we’d really appreciate it.

Agenda

Here’s what we’ll be covering:
« Why SELECT * happens
* When SELECT *isn’t that bad
* When SELECT *is that bad
« How SELECT * makes indexing hard
« How to make SELECT * less bad
* Picture to distract from short agenda

Why would you do that?

From lazy to here

Sometimes it’s innocent
* Do | need all these columns?
* | better get them to be safe

Clown shoes

Sometimes it’s just silly
* The PM just kept asking for more data in the report
* We ran out of data so we just made extra columns up

You’re the worst

Other times, it’s laziness
* | didn’t know you could choose columns
* Choosing columns in code is hard

How to Select Specific Columns in an Entity
Framework Query

One of the most frequent complaints that | hear when presenting to DBAs about Entity Framework is that it's “slow” and
that “developers should be endlessly tortured for using it". Ok, the second part | just made up but the sentiment exists.
DBAs just don't like developers using Entity Framework and with good reason. Entity Framework can make SQL Server
work awfully hard if the developer isn't careful. No, it's not April Fool's Day, we're really going to go over some Entity

Framework code. But | promise you it won't hurt...much.

https:#/www.brentozar.com/archive/2016/09/select-specific-columns-entity-framework-query/

| didn’t
Know It
was bad

SELECT Id b —

SELECT Id, DisplayName mf— e

SELECT Id,
DisplayName, AboutMe, '_ I

Website, CreationDate

SELECT *.

Dealing with it

You’re left with pretty grim choices.

1. Make areally wide nonclustered index
* (some key columns) include (every other column)

2. Rearrange your existing clustered index
 Maybe the wrong key column was chosen to begin with

3. Create a narrow nonclustered index
* Justthe (some key columns)

| don’t like any of those

Not that bad

Singles

If you’re only grabbing one row, it hurts less
* Keep in mind, I’m not saying it’s good
*You’re still reading a lot of potentially unused columns
* If you have MAX cols, you could be reading a lot of extra junk

&) (B.F) (BF) (8.8 (6.8 (B
Nt/ _/ — _ . —

Very Intense Very Utterly Excruciating Unimaginable

Pain Free Very Mild Discomforting Tolerable Distressing Distressing Intense Horrible Unbearable Unspeakable

ﬁ

LOB Data

The Stack Overflowed, again

Drainage
* The Posts table is fairly reasonable
* But the Body column is a nuisance
* NVARCHAR(MAX)
* Has the text from every Q&A EVER

You may have similar tables
« String fields with 4000/8000/MAX
XML, VARBINARY, JSON
* TEXT/NTEXT if you’re really unlucky

= BEf dbo.Posts

Columns

w0 |d (PK, int, not null)

E AcceptedAnswerld (int, null)

H AnswerCount (int, null)

E|| Body (nvarcharimax), not null) |

E ClosedDate (datetime, null)

E CommentCount (int, null)

E CommunityOwnedDate (datetime, null)
E CreationDate (datetime, not null)

E FavoriteCount (int, null)

E LastActivityDate (datetime, not null)
H LastEditDate (datetirne, null)

E LastEditorDisplayMame (nvarchar(d0]), null)
E LastEditorUserld (int, null}

E Chwnerlserld (int, null)

E Parentld {int, null}

H PostTypeld (int, not null)

H Score (int, not null)

E Tags (nvarchar(130), null)

E Title (nwarchar(250), null)

H ViewCount (int, not null)

©E) (B.F) (BF) (8.8 (6.8 (B.&
\« A\ — — _ .

_ Very Intense Very Utterly Excruciating Unimaginable
Distressing Intense Horrible Unbearable Unspeakable

Pain Free Very Mild Discomforting Tolerable Distressing

Data General

SQL and memory

Queries sometimes ask for memory

They ask for it for different reasons
* Sorts
* Hashes (joins and aggregates)

Some queries ask for more than others
* Number of rows
* Number of columns
* Data types
» Parallelism

SELECT

Cached plan size 24 KB
Estimated Operator Cost 0 (03%)
Degree of Parallelism]
Estimated Subtree Cost 19,4046
Memory Grant 1024
Estimated Number of Rows 1
Statement

SELECTTOP 1 Id
FROM dbo.MemoryGrants AS mg
ORDER BY mg.CrderDate

SELECT

Cached plan size 24 KB
Estimated Operator Cost 0 (0%)
Degree of Parallelism]
Estimated Subtree Cost 1993.85
Memory Grant 11241600
Estimated Number of Rows 1000000
Statement

SELECT *

FROM dbo.MemoryGrants AS mg

ORDER BY mg.CrderDate

Estimations

For variable length datatypes, SQL guesses
* Size of data in the column will be 1% of the size of the column

Times the estimated number of rows

* SQL uses cardinality estimates and row size to calculate
additional memory needed for the query

Why does that happen?
* Hash and Sort ops require all rows to arrive before they start
* The more they can process in memory, the better
 Spilling to disk is bad and slow

©E) (B.F) (BF) (8.8 (6.8 (B.&
\« A\ — — _ .

_ Very Intense Very Utterly Excruciating Unimaginable
Distressing Intense Horrible Unbearable Unspeakable

Pain Free Very Mild Discomforting Tolerable Distressing

Indexing Challenges

How do you index for this?

SELECT *
FROM dbo.Posts AS p
WHERE p.OwnerUserId = 22656

Key on OwnerUserld...
No Includes?
Some Includes?
All Includes?

= FR dbo.Posts
= Columns

ln-o Id II:PE im_: not null I
B AcceptedAnswerld {int, null)
B AnswerCount {int, null)
B Body (nvarchar(max), not null)
B ClosedDate (datetime, null)
B CommentCount (int, null}
B CommunityOwnedDate (datetime, null)
B CreationDate (datetime, not null)
B FaveriteCount (int, null)
B LastActivityDate (datetime, not null)
B LastEditDate (datetime, null)
B LastEditorDisplayMame {nvarchar(40), null)
B LastEditorUserld (int, null)
B OwnerUserld {int, null)
B Parentld (int, null)
B PostTypeld {int, not null)
B Score (int, not null)
B Tags (nvarchar(150), null)
B Title (nvarchar(250), null)
B ViewCount (int, not null)

What SQL thinks you should do
| The optimizer is clearly out of its mind

Missing Index Details from SQLQueryl3.sql - NADAULTRA\SQL2016E.StackOverflow (sa (62))
The Query Processor estimates that implementing the following index could improve the query cost by 99.9688%.
*/

/*

USE [StackOverflow]

GO

CREATE NONCLUSTERED INDEX [<Name of Missing Index, sysname,>]

ON [dbo].[Posts] ([OwnerUserId])

INCLUDE ([Id],[AcceptedAnswerId],[AnswerCount],[Body],[ClosedDate],[CommentCount],[CommunityOwnedDate],[CreationDate],[FavoriteCount],[LastActivityDate],[LastEditDate],[LastEditorDisplayName],[LastEditorUserId],[Parentld], =
[PostTypeId],[Score],[Tags],[Title], [ViewCount])

GO

*/

| already have a clustered index

Did | choose poorly?

The optimizer is lazy

It doesn’t want to make these choices

SELECT * CREATE INDEX ix_TryHard on dbo.Posts (OwnerUserId)

FROM dbD. Posts AS p Query 1: Query cost (relative to the batch): 50%
SELECT * FRCOM dbo.Posts AS p WHERE p.OwnerUserId >= 4269067

WHERE p.OwnerUserId >= 4269@6?\ = t}?
EIE LECT #* C:Lus[;z:i:]I.T:;iPz::z_[;:;?sT:]rEd]

Costc: 100 %
FROM dbo.Posts AS p

Query 2: Query cost (relative to the batch): 50%

WHERE p,[}wnerl_]ser:[d = A269068 SELECT * FROM dbo.Posts AS p WHERE p.OwnerUserId >= 4269068
= el 9
SELECT Tisted ED?F]S I[npdex Elee[k. [}?n(:[;.ui:]er[ec;:l
_ nner Join osts] . [ix_TryHar 2
Cost: 0 % Cost: O % Cost: 0 %

Key Lockup (Clustered)
[Posts] . [PE Posts_ Id] [p]
Cost: 100 %

| know the secret of the...

Index matching: Like the dating game
* Query: My perfect date is a romantic dinner
* Table: Let’s get drunk with my friends
* Query: I’ll just write my number on the bathroom wall

Mirror in the bathroom

That’s what a missing index request is |

The cry for help of areally bad date

For a good time
CREATE INDEX
[<Name of Missing
Index, sysname,>]

\

This gets harder with joins

SELECT |p.*
FROM dbo.Posts AS p
JOIN dbo.Users AS u
ON u.Id = p.OwnerUserId

Query 1: Query cost (relative to the batch): 97%
SELECT p.* FROM dbo.Posts AS p JOIN dbo.Users AS u ON u.Id = p.COwnerUserId

= %
SELECT[u. * - : k

SELECT Hash Match Clustered Index Scan (Clustered)
Cost- 0 & (Inner Join) [Users] . [PE_Users_Id] [ul

FROM dbo.Posts AS p Cost: S Cosz: 13
JOIN dbo.Users AS u 5

Clustered Index Scan (Clustered)

UN u. Id — p) DWHEFUSEPIC' [Posts] . [P Posts_ Id] [p]

Cost: 54 %

Query 2: Query cost (relative to the batch): 3%
SELECT u.* FROM dbo.Posts AS p JOIN dbo.Users AS u ON u.Id = p.OwnerUserId

j :Irt| Hi"di

Merge Join Clustered Index Scan (Clustered)
. (Inner Join) [Users] . [FK_Users_Id] [u]
D Cost: 36 & Cost: 31 &

b

Index Scan (NonClusterad)
[Posts]. [ix TryHard] [p]
Cost: 33 %

Annoying questions

How many columns can | select from Posts before my narrow
iIndex stops getting used?

Is there a certain combination of columns that changes this?

What about other predicates that reduce rows returned?

SELECT p.*

FROM dbo.Posts AS p
JOIN dbo.Users AS u

ON u.Id = p.OwnerUserId

Annoying questions
Eleventy

How many columns can | select from Posts before my narrow
iIndex stops getting used? Yep

Is there a certain combination of columns that changes this?

What about other predicates that reduce rows returned? Yep

SELECT p.*

FROM dbo.Posts AS p
JOIN dbo.Users AS u

ON u.Id = p.OwnerUserId

©E) (B.F) (BF) (8.8 (6.8 (B.&
\« A\ — — _ .

_ Very Intense Very Utterly Excruciating Unimaginable
Distressing Intense Horrible Unbearable Unspeakable

Pain Free Very Mild Discomforting Tolerable Distressing

Deferring The Pain

This will never be pain free

You want to use narrow nonclustered indexes

You’re okay with changing code and experimenting with indexes

Our starting query

SELECT u.*, p.Id AS [PostId]

FROM dbo.Users AS u

JOIN dbo.Posts AS p

ON p.OwnerUserId = u.Id

WHERE wu.CreationDate > '20168101°
AND u.Reputation > 100
AND p.PostTypeld = 1

Joins the Users table to the Posts table

Our iIndexes

All the pretty little clusters
*Users: Id
* Posts: Id (but we join on OwnerUserld from here)

Nothin’ but nonclustered:
» Users: CreationDate, Reputation, Id
* Posts: OwnerUserld, Id INCLUDE PostTypeld

These should make our query happy

©&) (B.F) (BF) (B8 (B8 (B.&) | 4
\« A\ — — _ . ,

Very Intense Very Utterly Excruciating Unimaginable

Pain Free Very Mild Discomforting Tolerable Distraasing Distressing Intense Horrible Unbearable Unspeakable

How do we make this smarter?

We don’t want to keep that hint
* Forcing an index hint takes choices away from the optimizer
* The Key Lookup plan might not be awesome for all predicates
« Data may change, and it might not even stay awesome for this
query

We do want to use our index
* How can we tell SQL that it’s safe to use?
* Let’s take temp tables off the table
*If you’re thinking table variables, go home

Commonality

WITH precheck AS (CTES Can help!

SELECT u.Id, p.Id AS [PostId]
FROM dbo.Users AS u
JOIN dbo.Posts AS p
ON p.OwnerUserId = u.Id
WHERE u.CreationDate > '20160101°
AND u.Reputation > 100
AND p.PostTypeld = 1
)
SELECT u.*, p.PostId
FROM precheck p
JOIN dbo.Users AS u
ON p.Id = u.Id

©E) (B.F) (BF) (8.8 (6.8 (B.&
\« A\ — — _ .

_ Very Intense Very Utterly Excruciating Unimaginable
Distressing Intense Horrible Unbearable Unspeakable

Pain Free Very Mild Discomforting Tolerable Distressing

Recap

This shouldn’t be your first stop

When you see queries that are SELECT * or just wide lists...
* Ask if all the columns are necessary

* If no one knows, just start removing them until someone
complains

* Don’t immediately jump to add wide indexes
* This should be a last resort for very important queries
* Try indexing just key columns first

*Sometimes the Key Lookup plan is fine (few rows don’t hurt
here)

Put the quill down, Chaucer

If all else fails, go for the rewrite
* You may need to experiment with index key column order
* Watch out for Sorts, Spools, other nonsense
* It really helps when the column that drives your joins is unique
* If it’s not, you may need to use a unique SET of columns
*DISTINCT and GROUP BY can be used as well

