
Improving SELECT * Query Performance

We love to get feedback

Please complete the session
feedback forms

SQLBits - It's all about the community...

Please visit Community Corner!

This year trying to get more people to learn about the SQL
Community, equally if you would be happy to visit the community

.

Agenda

• Why SELECT * happens

•

• When SELECT * is that bad

• How SELECT * makes indexing hard

• How to make SELECT * less bad

• Picture to distract from short agenda

Why would you do that?

From lazy to here

•Do I need all these columns?

• I better get them to be safe

Clown shoes

•The PM just kept asking for more data in the report

•We ran out of data so we just made extra columns up

•

•Choosing columns in code is hard

https://www.brentozar.com/archive/2016/09/select-specific-columns-entity-framework-query/

know it
was bad

SELECT Id

SELECT Id, DisplayName

SELECT Id,
DisplayName, AboutMe,
Website, CreationDate

SELECT *

Dealing with it

1. Make a really wide nonclustered index

• (some key columns) include (every other column)

2. Rearrange your existing clustered index

• Maybe the wrong key column was chosen to begin with

3. Create a narrow nonclustered index

• Just the (some key columns)

Not that bad

Singles

less

• good

•

• If you have MAX cols, you could be reading a lot of extra junk

LOB Data

The Stack Overflowed, again

Drainage

•The Posts table is fairly reasonable

•But the Body column is a nuisance

•NVARCHAR(MAX)

• Has the text from every Q&A EVER

You may have similar tables

•String fields with 4000/8000/MAX

•XML, VARBINARY, JSON

•

Demo

Data General

SQL and memory

Queries sometimes ask for memory

They ask for it for different reasons

•Sorts

•Hashes (joins and aggregates)

Some queries ask for more than others

•Number of rows

•Number of columns

•Data types

•Parallelism

Estimations

For variable length datatypes, SQL guesses

•Size of data in the column will be ½ of the size of the column

Times the estimated number of rows

•SQL uses cardinality estimates and row size to calculate
additional memory needed for the query

Why does that happen?

•Hash and Sort ops require all rows to arrive before they start

•The more they can process in memory, the better

•Spilling to disk is bad and slow

Demo

Indexing Challenges

How do you index for this?

No Includes?
Some Includes?

All Includes?

What SQL thinks you should do

The optimizer is clearly out of its mind

I already have a clustered index

Did I choose poorly?

The optimizer is lazy

Index matching: Like the dating game

•Query: My perfect date is a romantic dinner

•

•

Mirror in the bathroom

The cry for help of a really bad date

For a good time
CREATE INDEX
[<Name of Missing
Index, sysname,>]

This gets harder with joins

Annoying questions

How many columns can I select from Posts before my narrow
index stops getting used?

Is there a certain combination of columns that changes this?

What about other predicates that reduce rows returned?

Annoying questions

How many columns can I select from Posts before my narrow
index stops getting used?

Is there a certain combination of columns that changes this?

What about other predicates that reduce rows returned?

Eleventy

Yep

Yep

Deferring The Pain

This will never be pain free

You want to use narrow nonclustered indexes

Our starting query

Joins the Users table to the Posts table

Our indexes

All the pretty little clusters

• Users: Id

• Posts: Id (but we join on OwnerUserId from here)

• Users: CreationDate, Reputation, Id

• Posts: OwnerUserId, Id INCLUDE PostTypeId

These should make our query happy

Demo

How do we make this smarter?

•Forcing an index hint takes choices away from the optimizer

•The Key Lookup plan might not be awesome for all predicates

•Data may change, and it might not even stay awesome for this
query

We do want to use our index

•

•

•

Demo

Commonality

CTEs can help!

Recap

•Ask if all the columns are necessary

• If no one knows, just start removing them until someone
complains

•

•This should be a last resort for very important queries

•Try indexing just key columns first

•

here)

Put the quill down, Chaucer

If all else fails, go for the rewrite

•You may need to experiment with index key column order

•Watch out for Sorts, Spools, other nonsense

• It really helps when the column that drives your joins is unique

•

•DISTINCT and GROUP BY can be used as well

Try this at home

