
Data Science Algorithms In Plain English

Mark Whitehorn

© Mark Whitehorn

It’s all about me…

Prof. Mark Whitehorn
Emeritus Professor of Analytics

University of Dundee

Consultant

Writer (author)

m.a.f.whitehorn@dundee.ac.uk

© Mark Whitehorn

It’s all about me…

Teach Masters in:
Data Science

Part time
Distance learning - aimed at
existing data professionals

Data Engineering

© Mark Whitehorn

Outline

Data Science is about extracting information from
data and we are developing new algorithms for
doing this all the time. Algorithms are ways of
solving problems, they are not the code; indeed,
many famous algorithms predate the
development of computers. So, where do
algorithms come from? How are they
developed? Is each one new and unique? Are
they developed from scratch each time or is there
some kind of underlying framework?

© Mark Whitehorn

Precision

We have two hours (including questions!).

I do have to make a fast getaway BUT we have time for

question at half time.

I promised “plain English”.

I reckon I am only capable of two out of these three:

Short, understandable and precise.

So please forgive any imprecision.

© Mark Whitehorn

What is an algorithm?

It is a way of solving a problem. Nowadays we

generally implement algorithms as code in a

computer language – R or Python are often used

for machine learning but (within reason) almost

any will do. (I used to use Pascal but I am very

old.)

© Mark Whitehorn

What is an algorithm? - Soundex

A phonetic algorithm that tries to encode

homophones identically – so words that sound

the same end up producing the same codified

value (e.g. P434).

© Mark Whitehorn

Program Soundex;

Uses Crt;

Var

InputString : String[255];

CodeString : String[4];

Count,Counter : Integer;

FirstLetter : Char;

{---}

Procedure TurnTheWholeStringIntoUpperCase;

Begin;

For Count := 1 to Length(InputString) do

InputString[Count] := UpCase(InputString[Count]);

End;

{--}

Procedure CatchTheFirstLetterOfTheStringAndPutItIntoTheOutputString;

Begin;

FirstLetter := InputString[1];

End;

{--}

Procedure CodeTheStringIntoNumbers;

Begin;

For Count := 1 to Length(InputString) do

Case InputString[Count] of

'B','P','F','V' : InputString[Count] := '1';

'C','S','K','G','J','Q','X','Z' : InputString[Count] := '2';

'D','T' : InputString[Count] := '3';

'L' : InputString[Count] := '4';

'M','N' : InputString[Count] := '5';

'R' : InputString[Count] := '6';

'A','E','I','U','O','Y' : InputString[Count] := '7';

'H','W' : InputString[Count] := '8';

End; {Of Case}

End;

{--}

Procedure IfTwoOrMoreIdenticalNumbersStraddleAn8ThenTurnAllExceptFirstInto7;

Begin;

For Count := 2 to Length(InputString) do {Starting with the second letter....}

If (InputString[Count] = '8') Then {If you find an 'H' or a 'W'}

Begin;

Counter := Count + 1;

While (Counter <= Length(InputString)) and {While there is still a character to the right of the 'H' or 'W'..}

((InputString[Count-1]) = InputString[Counter]) do {and that character is same as the one to the left of the 'H' or 'W'}

Begin;

InputString[Counter] := '7'; {Zap that character}

Counter := Counter + 1; {Get ready to look at the next character along}

End;

End;

End;

{--}

Procedure IfTwoOrMoreIdenticalNumbersSitTogetherThenTurnAllExceptTheFirstInto7;

Begin;

For Count := 1 to Length(InputString) do {Starting with the first letter....}

Begin;

Counter := Count + 1;

While (Counter <= Length(InputString)) and {While there is still a character to the right of the 'H' or 'W'..}

((InputString[Count]) = InputString[Counter]) do {and that character is same as the one to the left of the 'H' or 'W'}

Begin;

InputString[Counter] := '7'; {Zap that character}

Counter := Counter + 1; {Get ready to look at the next character along}

End;

End;

End;

{--}

Procedure PassUpToThreeNumbersIntoTheOutputStringAsLongAsTheyAreNot7or8;

Begin;

CodeString := '0000';

CodeString[1] := FirstLetter;

Counter := 1;

Count := 2;

While (Count <= Length(InputString)) and (Counter < 5) do

Begin;

If (InputString[Count] in ['1'..'6']) then

Begin;

Counter := Counter + 1;

CodeString[Counter] := InputString[Count];

End;

Count := Count + 1;

End;

CodeString[0] := #4; {Manually sets the length of the CodeString to 4}

End;

{--}

{--}

Begin;

ClrScr;

Repeat

Writeln;

Writeln('Please enter a word; just press ''Enter'' on it''s own to exit.');

InputString := '0000';

CodeString := '0000';

Readln(InputString);

TurnTheWholeStringIntoUpperCase;

CatchTheFirstLetterOfTheStringAndPutItIntoTheOutputString;

CodeTheStringIntoNumbers;

IfTwoOrMoreIdenticalNumbersStraddleAn8ThenTurnAllExceptFirstInto7;

IfTwoOrMoreIdenticalNumbersSitTogetherThenTurnAllExceptTheFirstInto7;

PassUpToThreeNumbersIntoTheOutputStringAsLongAsTheyAreNot7or8;

Writeln(CodeString,' = Coded version of this word.');

until CodeString = '0000';

End.

© Mark Whitehorn

Soundex

For Count := 1 to Length(InputString) do

Case InputString[Count] of

'B','P','F','V‘ : InputString[Count] := '1';

'C','S','K','G','J','Q','X','Z' : InputString[Count] := '2';

'D','T' : InputString[Count] := '3';

'L' : InputString[Count] := '4';

'M','N' : InputString[Count] := '5';

'R' : InputString[Count] := '6';

'A','E','I','U','O','Y' : InputString[Count] := '7';

'H','W' : InputString[Count] := '8';

End; {Of Case}

(The full code is provided just in case)

© Mark Whitehorn

Soundex

‘Penguin’ raw encodes to P752775

Then we drop the duplicates and vowels to P525

Fred, Freddy and Freddie all encode to: F63

© Mark Whitehorn

Soundex

Soundex is NOT a classic data science algorithm.

But it makes the point that algorithm are not code

and are not even about computers. Check out the

dates of the patents.

Robert Russell

US1261167 (A) ― 1918-04-02

US1435663 (A) ― 1922-11-14

© Mark Whitehorn

Algorithms

So, algorithms are simply a formalised way of

solving a given problem.

In Data Science the terms is often used (perfectly

appropriately) for processes that we apply to data

in order to:

• understand it better

• see the patterns within it

• make predictions about future data

© Mark Whitehorn

Defining terms

Data mining

We look for information in raw data.

Humans have to work out how to do this.

Some of the techniques they develop are unique to a given

problem.

Others just happen to be highly applicable and eventually

become enshrined into the “Data Mining Hall of Fame”.

© Mark Whitehorn

Defining terms

Machine learning. A computer system (an algorithm) that

can extract information from data without human

guidance.

Machine learning often is based on data mining.

We can also say that if a data mining algorithm is used to

process a set of test data, and the resulting pattern is

stored for later use, then this is machine learning.

© Mark Whitehorn

Algorithms

So, many data mining algorithms are used

extensively in data science. So, let’s take look at a

couple.

As an example:

Suppose that we have some data about how

much we spend for a client (on advertising) and

how much additional profit the client makes.

© Mark Whitehorn

Algorithms

That data can be described as a set of X and Y

coordinates.

Spend Profit

14.2 7.0

15.0 8.0

15.5 10.0

16.0 12.0

16.9 10.8

17.0 20.1

17.0 20.0

17.1 11.7

18.0 20.7

18.0 20.0

18.5 29.6

18.9 19.8

19.0 29.0

19.1 19.2

19.4 36.0

20.0 36.0

20.1 28.2

20.2 45.1

21.0 45.0

21.4 45.8

21.8 35.7

22.0 45.0

22.1 44.9

22.3 55.2

23.0 55.0

23.6 44.1

24.0 45.5

24.0 45.0

24.3 61.8

24.7 54.7

25.0 61.0

25.3 67.8

25.9 55.0

26.0 67.0

26.8 67.1

26.9 60.5

27.0 67.0

27.4 70.0

28.0 71.0
© Mark Whitehorn

Algorithms

We can plot the data points.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

15.0 17.0 19.0 21.0 23.0 25.0 27.0 29.0

Marketing Spend in £1,000

Additional

Profit

in £1,000

© Mark Whitehorn

Algorithms

Predicting the future. The client says “If we spend, say, £20K with

you, how much additional profit will be see?”

What do we do?

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

15.0 17.0 19.0 21.0 23.0 25.0 27.0 29.0

Marketing Spend in £1,000

Additional

Profit

in £1,000

© Mark Whitehorn

Algorithm Choice

0

20

40

60

80

100

120

15 17 19 21 23 25 27 29

We can fit a line to the data.

Which do you think is the best
line to use in order to:

• understand the data better

• see the patterns within it

• make predictions about
future data?

(If you can answer this correcty
then you understand the
general principle of
‘overfitting’).

0

20

40

60

80

15 17 19 21 23 25 27 29

0.0

20.0

40.0

60.0

80.0

15.0 17.0 19.0 21.0 23.0 25.0 27.0 29.0

© Mark Whitehorn

Algorithm Choice

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

15.0 17.0 19.0 21.0 23.0 25.0 27.0 29.0

Marketing Spend in £1,000

Additional

Profit

in £1,000

© Mark Whitehorn

Machine Learning

Now adding a line of best fit to a graph is something we

probably all did in school.

But that simple act is a wonderfully elegant example that

encompasses so much that is characteristic of algorithms in

Data Science. Linear regression is the algorithm and what

we did is not only an example of using an algorithm it is

also an example of Machine Learning (ML).

0.0

50.0

100.0

15.0 20.0 25.0 30.0

© Mark Whitehorn

Machine Learning

Where we use an algorithm to ‘learn’ a pattern

that is inherent in some existing data. That

pattern can then used to make predictions about

data that has not yet been analysed.

© Mark Whitehorn

Data modelling (no, not that kind)

Better still, in formal terms, our line is a data model.

(Note that the relational model is a data model, so is the dimensional model.

But the term has another use as we are using it here.)

© Mark Whitehorn

Data modelling

Training data + algorithm = data model

Our XY Coordinates + Linear regression = Line

We use the data model to predict the future.

© Mark Whitehorn

Linear Regression

Linear regression finds the ‘best’ relationship

between X and Y. To put that another way, it

produces the values of Y from the X values

with the least error.

© Mark Whitehorn

© Mark Whitehorn

Data modelling

Models are characteristically much smaller than the training data.

The line can be defined as an equation of the form:

y = mx +c

In our case it is:

y = 5x - 67

This is tiny compared to the 10,000 or 107 points that we could have
used to train the model.

Yet this tiny, elegant, compact model can be used to predict future Y
values given an X value.

© Mark Whitehorn

Data modelling

A client has £20K to spend so we can predict an increased

profit of £33K.

y = (5 * 20) - 67 = 100 – 67 = 33

© Mark Whitehorn

Data modelling

Let’s just check. Yup! That looks intuitively correct.

X = 20

y = 33

0

10

20

30

40

50

60

70

80

15 17 19 21 23 25 27 29

© Mark Whitehorn

Data modelling

In practice we would always do extensive testing of our

model and very often tweak it.

Training data + algorithm = data model

Check model using test data

We have formal processes for this (ROC curves and so on).

© Mark Whitehorn

ROC curves

Emma and I talked about ROC curves yesterday. If you

missed the talk and I have now sparked your interest,

check out the video.

© Mark Whitehorn

Data modelling

Once we are happy it is good, we start to use the model.

Training data + algorithm = data model

Check model using test data

New data + data model = new information

© Mark Whitehorn

Example two.

We also have some insurance

claims data. BIP and TYS are

complex measures of a claim, the

result is whether we paid out or

decided the claim was fraudulent.

We have existing data on 2,000

honest claims and 200 fraudulent.

BIP TYS Result

103 109 Paid

125 123 Fraud

117 121 Paid

123 115 Paid

113 119 Paid

© Mark Whitehorn

Example two.

What modelling algorithm would

you suggest here?

© Mark Whitehorn

Example two.

What modelling algorithm would

you suggest here?

Clustering!

© Mark Whitehorn

Example two.

Sometimes clusters are separated, sometimes they overlap.

Let’s take the harder case where they overlap. What is our data

model and how do we use it to assign a case to new data?

© Mark Whitehorn

Clustering

Let’s talk zombies.

Any given cluster

will have some

distribution in each

dimension.

© Mark Whitehorn

Clustering

Same for the other one.

© Mark Whitehorn

Clustering

A
b

2
 l
e
v
e
l

© Mark Whitehorn

So we can use the

distributions to assign

probabilities to new

points.

What is the model here?

Clustering

So we can use the

distributions to assign

probabilities to new

points.

What is the model here?

It is simply the mean

and the standard

deviation of the four

distributions.

A
b

2
 l
e
v
e
l

© Mark Whitehorn

Data modelling

Training data + algorithm = data model

Our XY Coordinates + Clustering = Cluster

plus the classification distributions

© Mark Whitehorn

More about efficiency

We can say that 69%

of the healthy people

have an Ab of 105 or

below and that 31%

of them have an Ab

> 105.

70 80 90 100 110 120 130 140

Healthy

Ab level

0.69 0.31

© Mark Whitehorn

More about
efficiency
If we assume that

the two factors are

independent (which

seems reasonable) it

is then to calculate

the numbers.

0.69 0.31
0
.6

9

 0

.3
1

H
e
a
lt

h
y

Healthy© Mark Whitehorn

More about
efficiency
If we assume that

the two factors are

independent (which

seems reasonable) it

is then to calculate

the numbers.

Does this look

right?

0.69 0.31
0
.6

9

 0

.3
1

H
e
a
lt

h
y

Healthy

0.48 0.21

0.21 0.10

© Mark Whitehorn

More about
efficiency
The effect is easier if

we increase the

number of patients

to 10,00. Note I am

plotting the healthy

patients last so that

they overlay the

infected. But that is

OK, we are

estimating the

healthy ones.

0.69 0.31
0
.6

9

 0

.3
1

H
e
a
lt

h
y

Healthy

0.48 0.21

0.21 0.1

More about
efficiency
Even easier if we

lose the infected

patients.

0.69 0.31
0
.6

9

 0

.3
1

H
e
a
lt

h
y

Healthy

0.48 0.21

0.21 0.1

© Mark Whitehorn

Constrained clustering

Data points can be related in two ways - must-link and

cannot-link.

Points related by a must-link have to be in the same cluster,

those related by cannot-link must not be in the same

cluster. Constrained clustering algorithms understand these

relationships and are used to look for clusters.

47© Mark Whitehorn

Constrained clustering

Clearly sets of data can be constructed that are impossible to

cluster.

A – must-link – B

B – cannot-link – C

C- must-link - A

Some constrained clustering algorithms abort when presented

with this data, others find the minimum constraint violation.

48© Mark Whitehorn

Clustering algorithms

© Mark Whitehorn

So, what is an algorithm?????

Is it “clustering” or “K means”?

Both.

So, let’s talk about K means as a specific example

of a clustering algorithm.

© Mark Whitehorn

K means clustering

Given a set of observations (x1, x2, …, xn), where each
observation is a d-dimensional real vector, k-means
clustering aims to partition the n observations into k (≤
n) sets S = {S1, S2, …, Sk} so as to minimize the inter-
cluster sum of squares (ICSS) (sum of distance functions
of each point in the cluster to the K centre).

https://en.wikipedia.org/wiki/K-means_clustering

Now, I understand that this explanation won’t work for
everyone so:

© Mark Whitehorn

K means clustering

in other words, its objective is to find:

where μi is the mean of points in Si.

https://en.wikipedia.org/wiki/K-means_clustering

© Mark Whitehorn

K means clustering

Time for some board work

(Except I guess there isn’t going to be a

board)

Time for some arm waving

© Mark Whitehorn

K means clustering

iris

newiris <- iris

newiris$Species <- NULL

newiris

kc <- kmeans(newiris, 3)

kc

table(iris$Species, kc$cluster)

plot(newiris[c("Sepal.Length", "Sepal.Width")], col=kc$cluster)

points(kc$centers[,c("Sepal.Length", "Sepal.Width")], col=1:3,
pch=8, cex=2)

http://www.rdatamining.com/examples/kmeans-clustering

Author Yanchang Zhao

© Mark Whitehorn

http://www.rdatamining.com/examples/kmeans-clustering

K means clustering

K means is an heuristic algorithm which

means that…….

© Mark Whitehorn

K means clustering

K means is an heuristic algorithm which

means that the end result is not known as

each step proceeds. (Think about playing

chess; all chess playing is heuristic.) K

means is also stochastic.

© Mark Whitehorn

K means clustering

There is no guarantee that one run will actually
find the optimal solution; it can depend on
where the initial points are placed.

So the algorithm is often run multiple times.
However it can be slow to converge and there
are known sets of points (even in two
dimensions) that are particularly troublesome.

However, in practice, it is a very good
algorithm.

© Mark Whitehorn

Decision Trees

History

• J Ross Quinlan introduced a decision tree algorithm called ID3

58© Mark Whitehorn

Decision Trees

Used to assign each case to one of several categories

Explains the classification – which variables are used

Decision trees are easy to understand

Often used for the prediction of values of the variables
explained

59© Mark Whitehorn

Decision Trees

The process is essentially one of recursive partitioning

60© Mark Whitehorn

Decision Trees

Decision trees tries all possible splits using all possible

values of each input attribute

Chooses the most effective split as the first

Several ways of measuring the efficacy of the split – one of

which is frequency distribution and another is entropy –

look up entropy in this context

61© Mark Whitehorn

Decision Trees

Are all splits binary?

No – eye colour

But any algorithm that can perform a binary split can also

split on multiple factors

62© Mark Whitehorn

Decision Trees

Algorithm design……

• Avoid splits leading to one member

• Watch high cardinality predictors

• What happens if customer name is used as a predictor?

• What happens with post code?

• Should you look for hierarchies?

63© Mark Whitehorn

Decision Trees

#Libary

library(rpart)

library(readr)

titanic <- read_csv("~/2018/QA/PWC/titanicdecisiontrees.csv")

tree <- rpart(survived ~ pclass + sex + age + sibsp + parch + fare + embarked,

data=titanic,

method="class")

plot(tree, uniform=TRUE,

main="Titanic")

text(tree, use.n=TRUE, all=TRUE)

str(tree)

64© Mark Whitehorn

658

Males

21%

385

Females

74%

1043

Passengers

41% survived

615

‘Adult’

19%

43

‘Young’

51%

16

‘Big family’

6%

27

‘Small family’

78%

151

3rd class

48%

234

1st/2nd class

91%

21

Expensive fare

14%

130

Cheap fare

53%

Titanic

© Mark Whitehorn

Decision Trees

Input is a table, in this case about insurance claims.

Decision trees tries all possible splits using all possible values of
each input attribute.

ID Local People Injury Time Police Fraud

1 Yes 2 No 17:35 No No

2 No 2 No 12:06 Yes No

3 Yes 2 No 16:45 Yes No

4 No 4 Yes 19:45 No Yes

© Mark Whitehorn

Decision Trees

67

4%

Fraudulent

(100/2,500)

30%

(31/98)

2.8%

(69/2,402)

22%

(4/18)
62%

(18/29)

17%

(9/51)

95%

(18/19)

0%

(0/10)

© Mark Whitehorn

Consolidation

Algorithms are ways of solving problems, not the code

itself (that is simply an implementation issue).

They are often underpinned by complex maths/statistics.

But we don’t need to understand this in order to use them.

BUT choosing the correct algorithm is crucial. Many

people don’t. So we do need to understand (in plain

English) how algorithms work, what they are trying to

achieve.

© Mark Whitehorn

Consolidation

Many algorithms been prewritten and form the “Data

Mining Hall Of Fame”. These are often seen as the “Data

Science” algorithms and, indeed, the “Machine Learning”

algorithms.

But very often, in my experience, these are simply a

framework upon which to start building.

© Mark Whitehorn

Consolidation

Often we use the existing algorithms (e.g. clustering) to

create a data model. And then use that to build further

models, for example RFI Recency, Frequency and Intensity.

© Mark Whitehorn

Consolidation

I have shown 2 dimensions in my examples. But often we

have far more. The maths get a little more complex but,

oddly, not exponentially so for each dimension.

The data we use (the xy coordinates I have shown so far)

can be called vectors. This is a good way to think about

them as we look at more complex algorithms.

We have looked at linear regression, clustering and

decision trees. Let’s look at some more algorithms.

© Mark Whitehorn

Quick overview of Techniques

Data mining techniques

• Clustering

• Classification

• Decision trees

• Regression

• KNN

• Segmentation

• Association

• Sequence analysis

• Neural nets

© Mark Whitehorn

KNN (K Nearest Neighbour)

Suppose that we have some two

dimensional data that also has a binary

classification (such as male - female).

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

12.0 14.0 16.0 18.0 20.0 22.0 24.0© Mark Whitehorn

KNN (K Nearest Neighbour)

We want to use it for prediction (given

these X,Y values, what is the gender?).

We might draw a line:

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

12.0 14.0 16.0 18.0 20.0 22.0 24.0© Mark Whitehorn

KNN (K Nearest Neighbour)

But suppose that the data is less

cooperative. Let’s zoom in:

© Mark Whitehorn

KNN (K Nearest Neighbour)

Take the direct line between two points,

find the mid point

© Mark Whitehorn

KNN (K Nearest Neighbour)

Extrapolate at right angles

© Mark Whitehorn

KNN (K Nearest Neighbour)

repeat

© Mark Whitehorn

KNN (K Nearest Neighbour)

consolidate

© Mark Whitehorn

KNN (K Nearest Neighbour)

Zoom out

© Mark Whitehorn

KNN (K Nearest Neighbour)

So the unknown data point would be

classified as Blue.

© Mark Whitehorn

KNN (K Nearest Neighbour)

Here it would be classified as Red.

Do we actually like this choice?

© Mark Whitehorn

KNN (K Nearest Neighbour)

That’s OK, we have options!

So far we have been using one neighbour.

© Mark Whitehorn

KNN (K Nearest Neighbour)

What if we choose three? Answer: this

green point would be classified as blue.

© Mark Whitehorn

KNN (K Nearest Neighbour)

The K is simply the number of nearest

neighbours you want to use. What is the

correct number?

I don’t know but it had better be odd.

© Mark Whitehorn

Support Vector Machines

These help to separate out data. More

accurately, they allow us to separate data

that is somewhat interwoven more easily.

Imagine that we have some vectors that

describe some data.

© Mark Whitehorn

Support Vector Machines

SVMs projects your data into higher

dimensions in order to create/derive/learn a

hyperplane which can separate your data

into two classes.

© Mark Whitehorn

Support Vector Machines

© Mark Whitehorn

Support Vector Machines

© Mark Whitehorn

Support Vector Machines

© Mark Whitehorn

Support Vector Machines

© Mark Whitehorn

Support Vector Machines

© Mark Whitehorn

Support Vector Machines

But why are they called SMV?

The hyperplane fits between the two classes but
there is always a ‘nearest’ red dot and blue dot.
These balls are considered to be the vectors
that support the hyperplane. Their distance to
the hyperplane is called the margin. The SMV
keeps the margins identical and (obviously)
tried to maximise them.

© Mark Whitehorn

Neural Nets

Neuron

Dendrites

Cell body

Nucleus

Axon

Axon

terminal

Real Neurons

Real Neurons
Neuron

Dendrites

of another

neuron

Synapse

Synapse

Axon

Terminals

of other

neurons

• The output from each neuron is binary, either it fires or it doesn’t

Real Neurons

• The input to the target neuron can have many states.
Perhaps the first input neuron is triggered, or the
second, or the first and the third together and so on

• Some input combinations will fire the target neuron,
others won’t. So, while the output of each neuron is
binary, the input isn’t because many neurons can
act as input to one neuron

Real Neurons

Real Neurons

Real Neurons

If we can
characterise
this behaviour
in some way
then we can
adapt it for
use in ANN

Real Neurons

• Each input neuron can provide an input (X)
which is binary (it is either 0 or 1), but they
have differing effects. That is, some can
cause the target neuron to fire on their own,
others can’t

• We can add a “weight” (W) to model this.
The higher the value of the weight, the
greater the influence the input neuron has
on the chance of the target firing

• These inputs, times their respective weights,
are collected together in some way. For the
sake of simplicity, we will sum them

• The summed value (S) either does, or does
not, exceed the threshold (T). If it does, the
neuron fires with output Z which is, again,
binary

Modelling real Neurons

X2 W2

Σ
O

u
tp

u
t (Z

)

Input (S)

X - binary

W - continuous

S - continuous

T - continuous

Z - binary

T (Threshold)

Z (Output)S(Sum)

We set the threshold to zero and render
it non-binary. It is smoothed (typically as
a sigmoid function but others
are used)

One reason we make these changes is so
that we can make use of
backpropagation. (Paul Werbos 1974).
We will look at why we want to use
backpropagation later

So both output and input are now
continuous, in fact, all the values are now
continuous

Neurons in an Artificial Neural Network

X2 W2

Σ
O

u
tp

u
t (Z

)

Input (S)

X – continuous, normalised

W - continuous

S - continuous

T – nominally set to zero

Z – continuous, normalised

Z (Output)S(Sum)

Neural Networks

Sepal Sepal Petal Petal Species

Length Width Length Width

5.1 3.5 1.4 0.2 setosa

4.9 3 1.4 0.2 setosa

4.7 3.2 1.3 0.2 setosa

4.6 3.1 1.5 0.2 setosa

7 3.2 4.7 1.4 versicolor

6.4 3.2 4.5 1.5 versicolor

6.9 3.1 4.9 1.5 versicolor

5.5 2.3 4 1.3 versicolor

Σ
Z (Output)

Let’s look at a very simple neural network consisting of just two neurons. This
is clearly unrealistic but it shows the principles very well. We will use a classic
set of data for this, the so-called Iris Data

We’ll focus on just the first two dimensions, sepal length and width.

Let’s look at a very simple neural network consisting of just two neurons. This
is clearly unrealistic but it shows the principles very well. We will use a classic
set of data for this, the so-called Iris Data

We’ll focus on just the first two dimensions, sepal length and width. First we
normalise the data

Neural Networks

Sepal Sepal Petal Petal Species

Length Width Length Width

5.1 3.5 1.4 0.2 setosa

4.9 3 1.4 0.2 setosa

4.7 3.2 1.3 0.2 setosa

4.6 3.1 1.5 0.2 setosa

7 3.2 4.7 1.4 versicolor

6.4 3.2 4.5 1.5 versicolor

6.9 3.1 4.9 1.5 versicolor

5.5 2.3 4 1.3 versicolor

Sepal Sepal Species

Length Width

0.51 0.875 setosa

0.49 0.75 setosa

0.47 0.8 setosa

0.46 0.775 setosa

0.7 0.8 versicolor

0.64 0.8 versicolor

0.69 0.775 versicolor

0.55 0.575 versicolor

Σ
Z (Output)

Sepal Sepal Species

Length Width

0.51 0.875 setosa

0.49 0.75 setosa

0.47 0.8 setosa

0.46 0.775 setosa

0.7 0.8 versicolor

0.64 0.8 versicolor

0.69 0.775 versicolor

0.55 0.575 versicolor

• The new values become the input values for the two input neurons

Neural Networks

Σ
Z (Output)

Sepal Sepal Species

Length Width

0.51 0.875 setosa

0.49 0.75 setosa

0.47 0.8 setosa

0.46 0.775 setosa

0.7 0.8 versicolor

0.64 0.8 versicolor

0.69 0.775 versicolor

0.55 0.575 versicolor

The new values become the input values for the two input neurons

The two weight (W1 and W2) are set to random values between -1 and +1

W1 = 0.4

W2 = -0.65

Neural Networks

Σ
Z (Output)

0.875

0.51

0.0185 0.513

Sepal Sepal Species

Length Width

0.51 0.875 setosa

0.49 0.75 setosa

0.47 0.8 setosa

0.46 0.775 setosa

0.7 0.8 versicolor

0.64 0.8 versicolor

0.69 0.775 versicolor

0.55 0.575 versicolor

Let’s say that we arbitrarily chose that we want an output value of 0 to
indicate versicolor and 1.0 to indicate setosa. We can’t change the input
values, but we can change the weights.

Neural Networks

Σ
Z (Output)

0.875

0.51

0.0185 0.513

Sepal Sepal Species

Length Width

0.51 0.875 setosa

0.49 0.75 setosa

0.47 0.8 setosa

0.46 0.775 setosa

0.7 0.8 versicolor

0.64 0.8 versicolor

0.69 0.775 versicolor

0.55 0.575 versicolor

So we alter them slightly to get closer to the number we want. We go
through all of the data and keep cycling through it, gradually adjusting the
weights until we arrive at weight values that give us the best separation of
the data

Neural Networks

Σ
Z (Output)

0.875

0.51

0.139 0.55

In practice, with our tiny neural net, it would be ridiculous to try to get a
reasonable separation, there are simply not enough pathways. But that is OK,
we can solve that problem by adding more neurons. And this is what we do
in modern neural nets

Neural Networks

Modern neural networks can be built in many ways, we will describe a common way

The neurons are layered and the layers named as shown

Neurons are connected to every other one in the preceding and succeeding layers

Data is fed into the input neurons, output is read from the output neurons

Neural Networks

Input Hidden Output

In practice there can
be (and often are)
multiple hidden layers

Neural Networks

So, the good news is that we have more pathways and more weights to
adjust. The downside is that the number of possible combinations of weight
values explodes. There is a trade off here. We need large numbers of weights
to give the separation but the number we need to do the job is so large that
there are billions/trillions of combinations of values. Finding the
combinations of weights that best separate the data effectively is very hard;
too hard to do by simply running through all the possible combinations

This problem effectively stopped the development of neural nets for a long
time. Happily, in 1974 Paul Werbos, working at Harvard, introduced the idea
of back propagation in his PhD thesis. However this took a while to be
adopted

Neural Networks

Data is fed into the input neurons

Imagine that you want to look for insurance fraud. You remember this data

(I’ve removed the Postcode column)

Neural Networks

Input columns

Target

column

CaseID Date of Theft Time of Theft Value of Items Number of Items Fraud

1 23/01/2019 11:30 £350 7 No

2 23/01/2019 12:50 £750 9 No

3 23/01/2019 13:45 £1,230 2 Yes

4 23/01/2019 14:40 £540 3 No

5 23/01/2019 14:50 £450 7 No

6 23/01/2019 15:20 £300 5 No

Etc. Etc. Etc. Etc. Etc. Etc.

We will essentially set up a neural net with one input neuron for each input column. The
values in these columns are complex and certainly drawn from different domains. So we
will normalise them

There are many different ways of normalising the data

Neural Networks

Input columns

Target

column

CaseID Date of Theft Time of Theft Value of Items Number of Items Fraud

1 0.654 0.453 .323 0.35 0

2 0.654 0.463 .654 0.45 0

3 0.654 0.532 .850 0.1 1

4 0.654 0.567 .453 0.15 0

5 0.654 0.617 .398 0.35 0

6 0.654 0.633 .254 0.25 0

etc etc etc etc etc etc

The normalised data is fed into the input neurons. Before training it might look like this

Neural Networks

Date

0.654

Time

0.435

Value

0.323

Numbe

r

0.35

0.47

Blue = positive values

Red = negative

Intensity = approximate value

after training like this

Neural Networks

Date

0.654

Time

0.435

Value

0.323

Numbe

r

0.35

0.07

Blue = positive values

Red = negative

Intensity = approximate value

1944 - Neural networks were first proposed at the University of Chicago by Warren
McCullough and Walter Pitts. These early neural nets had weights and thresholds but
no layers. There was also no training mechanism. McCullough and Pitts demonstrated
that, in principle, a neural net mimicked how a human brain worked and that a neural
net could do the same computation as a digital computer. Thus they drew the
comparison between the brain and the machine

1952 - McCullough and Pitts moved to MIT as part of the team that formed the
cognitive science department

1957 – The world’s first trainable neural network (the Perceptron) was created by the
psychologist Frank Rosenblatt at Cornell University. It had adjustable weights but only
one hidden layer. Perceptrons were actively studied in both computing and
psychology until 1959

Neural Networks

1959 - Marvin Minsky and Seymour Papert (mathematicians at MIT) published a book

(Perceptrons) which essentially argued that performing some common computations

on Perceptrons was going to be far too time consuming. It is argued that this book

destroyed the interest in neural nets at that time. Minsky and Papert went on to

become the co-directors of the new MIT Artificial Intelligence Laboratory

1974 – Paul Werbos, Harvard. PhD thesis. Introduced backpropagation

1980s - Neural nets had a resurgence and then again disappeared

1986 - Learning representations by backpropagating errors, Nature 323, 533-536 (9

October 1986) David E. Rumelhart, Geoffrey E. Hinton & Ronald J. Williams (This will

ultimately make neural nets computationally viable)

Neural Networks

2010 – MIT seriously considered dropping neural nets from the AI syllabus.

Many felt that neural models were not a good representation of the brain

and no neural nets had done anything useful anyway. One reason MIT

decided not to drop it was to ensure that students knew about them and

would not waste time reinventing them

2012 – Geoffrey Hinton (great-(great?)-grandson of George Boole!) published

a paper about picture recognition that stunned the world and showed, once

and for all, that neural nets could do very serious work. Since then they have

become a mainstay of machine learning

Neural Networks

Now, of course, neural networks (and, indeed, our brains) are stuffed with neurons. But we can think of
them as simply a collection of weights and thresholds

They have a large number of inputs (X) and those produce outputs (Y)

Which means that we can think of the entire network simply as a function. The output is a vector of Y values
which is a function of the input vector (VX), the weights vector (VW) and the thresholds vector(VT)

VY = f (VX, VW, VT)

We cannot alter the input vector but we can alter the weights and the thresholds in order to get the output
vector we desire

Neural networks are simply a complex
function

WeightInput X1

Input X2

Input Xn

Output Y1

Output Y2

Output Yn

Bias

Input

Hidden

Bias

• We have describe neural nets as having simply weights and measures and this can be true. However it

is also possible that the model may include a bias. This is simply a constant that is added to the

calculation. The effect of adding a bias is essentially to move the activation function. This is sometimes

helpful in speeding up learning. The bias values are also multiplied by a weight

1.0 1.0

Output

• The weight is used in the usual way

Bias

Sepal Sepal Species

Length Width

0.51 0.875 setosa

0.49 0.75 setosa

0.47 0.8 setosa

0.46 0.775 setosa

0.7 0.8 versicolor

0.64 0.8 versicolor

0.69 0.775 versicolor

0.55 0.575 versicolor

Σ
Z (Output)

0.875

0.51

0.459 0.62

1.0

Thank you for listening

FEEDBACK!!!!!!!!!

© Mark Whitehorn

