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Outline

Data Science is about extracting information from 
data and we are developing new algorithms for 
doing this all the time. Algorithms are ways of 
solving problems, they are not the code; indeed, 
many famous algorithms predate the 
development of computers. So, where do 
algorithms come from? How are they 
developed? Is each one new and unique? Are 
they developed from scratch each time or is there 
some kind of underlying framework?
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Precision

We have two hours (including questions!).  

I do have to make a fast getaway BUT we have time for 

question at half time.

I promised “plain English”.

I reckon I am only capable of two out of these three:

Short, understandable and precise.

So please forgive any imprecision.
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What is an algorithm?

It is a way of solving a problem.  Nowadays we 

generally implement algorithms as code in a 

computer language – R or Python are often used 

for machine learning but (within reason) almost 

any will do.  (I used to use Pascal but I am very 

old.)
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What is an algorithm? - Soundex

A phonetic algorithm that tries to encode 

homophones identically – so words that sound 

the same end up producing the same codified 

value (e.g. P434).
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Program Soundex;

Uses Crt;

Var

InputString : String[255];

CodeString : String[4];

Count,Counter : Integer;

FirstLetter : Char;

{-------------------------------------------------------------------------}

Procedure TurnTheWholeStringIntoUpperCase;

Begin;

For Count := 1 to Length(InputString) do

InputString[Count] := UpCase(InputString[Count]);

End;

{------------------------------------------------------------------------}

Procedure CatchTheFirstLetterOfTheStringAndPutItIntoTheOutputString;

Begin;

FirstLetter := InputString[1];

End;

{------------------------------------------------------------------------}

Procedure CodeTheStringIntoNumbers;

Begin;

For Count := 1 to Length(InputString) do

Case InputString[Count] of

'B','P','F','V'                 : InputString[Count] := '1';

'C','S','K','G','J','Q','X','Z' : InputString[Count] := '2';

'D','T'                         : InputString[Count] := '3';

'L'                             : InputString[Count] := '4';

'M','N'                         : InputString[Count] := '5';

'R'                             : InputString[Count] := '6';

'A','E','I','U','O','Y'         : InputString[Count] := '7';

'H','W'                         : InputString[Count] := '8';

End; {Of Case}

End;

{------------------------------------------------------------------------}

Procedure IfTwoOrMoreIdenticalNumbersStraddleAn8ThenTurnAllExceptFirstInto7;

Begin;

For Count := 2 to Length(InputString) do    {Starting with the second letter....}

If  (InputString[Count] = '8') Then       {If you find an 'H' or a 'W'}

Begin;

Counter := Count + 1;

While (Counter <= Length(InputString)) and         {While there is still a character to the right of the 'H' or 'W'..}

((InputString[Count-1]) = InputString[Counter]) do {and that character is same as the one to the left of the 'H' or 'W'}

Begin;

InputString[Counter] := '7';                     {Zap that character}

Counter := Counter + 1;                         {Get ready to look at the next character along}

End;

End;

End;

{------------------------------------------------------------------------}

Procedure IfTwoOrMoreIdenticalNumbersSitTogetherThenTurnAllExceptTheFirstInto7;

Begin;

For Count := 1 to Length(InputString) do    {Starting with the first letter....}

Begin;

Counter := Count + 1;

While (Counter <= Length(InputString)) and         {While there is still a character to the right of the 'H' or 'W'..}

((InputString[Count]) = InputString[Counter]) do  {and that character is same as the one to the left of the 'H' or 'W'}

Begin;

InputString[Counter] := '7';                     {Zap that character}

Counter := Counter + 1;                         {Get ready to look at the next character along}

End;

End;

End;

{------------------------------------------------------------------------}

Procedure PassUpToThreeNumbersIntoTheOutputStringAsLongAsTheyAreNot7or8;

Begin;

CodeString := '0000';

CodeString[1] := FirstLetter;

Counter := 1;

Count := 2;

While (Count <= Length(InputString)) and (Counter < 5) do

Begin;

If (InputString[Count] in ['1'..'6'])  then

Begin;

Counter := Counter + 1;

CodeString[Counter] := InputString[Count];

End;

Count := Count + 1;

End;

CodeString[0] := #4;  {Manually sets the length of the CodeString to 4}

End;

{------------------------------------------------------------------------}

{------------------------------------------------------------------------}

Begin;

ClrScr;

Repeat

Writeln;

Writeln('Please enter a word; just press ''Enter'' on it''s own to exit.');

InputString := '0000';

CodeString := '0000';

Readln(InputString);

TurnTheWholeStringIntoUpperCase;

CatchTheFirstLetterOfTheStringAndPutItIntoTheOutputString;

CodeTheStringIntoNumbers;

IfTwoOrMoreIdenticalNumbersStraddleAn8ThenTurnAllExceptFirstInto7;

IfTwoOrMoreIdenticalNumbersSitTogetherThenTurnAllExceptTheFirstInto7;

PassUpToThreeNumbersIntoTheOutputStringAsLongAsTheyAreNot7or8;

Writeln(CodeString,'    = Coded version of this word.');

until CodeString = '0000';

End.
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Soundex

For Count := 1 to Length(InputString) do

Case InputString[Count] of

'B','P','F','V‘ : InputString[Count] := '1';

'C','S','K','G','J','Q','X','Z' : InputString[Count] := '2';

'D','T'                             : InputString[Count] := '3';

'L'                                  : InputString[Count] := '4';

'M','N'                           : InputString[Count] := '5';

'R'                                 : InputString[Count] := '6';

'A','E','I','U','O','Y'           : InputString[Count] := '7';

'H','W'                           : InputString[Count] := '8';

End; {Of Case}

(The full code is provided just in case)
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Soundex

‘Penguin’ raw encodes to P752775

Then we drop the duplicates and vowels to P525

Fred, Freddy and Freddie all encode to: F63
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Soundex

Soundex is NOT a classic data science algorithm.  

But it makes the point that algorithm are not code 

and are not even about computers.  Check out the 

dates of the patents.

Robert Russell

US1261167 (A) ― 1918-04-02

US1435663 (A) ― 1922-11-14
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Algorithms

So, algorithms are simply a formalised way of 

solving a given problem.  

In Data Science the terms is often used (perfectly 

appropriately) for processes that we apply to data 

in order to:

• understand it better

• see the patterns within it

• make predictions about future data  
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Defining terms

Data mining  

We look for information in raw data.  

Humans have to work out how to do this.  

Some of the techniques they develop are unique to a given 

problem.  

Others just happen to be highly applicable and eventually 

become enshrined into the “Data Mining Hall of Fame”.  
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Defining terms

Machine learning.  A computer system (an algorithm) that 

can extract information from data without human 

guidance. 

Machine learning often is based on data mining.

We can also say that if a data mining algorithm is used to 

process a set of test data, and the resulting pattern is 

stored for later use, then this is machine learning.
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Algorithms

So, many data mining algorithms are used 

extensively in data science.  So, let’s take look at a 

couple.  

As an example:

Suppose that we have some data about how 

much we spend for a client (on advertising) and 

how much additional profit the client makes. 
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Algorithms

That data can be described as a set of X and Y 

coordinates.

Spend Profit

14.2 7.0

15.0 8.0

15.5 10.0

16.0 12.0

16.9 10.8

17.0 20.1

17.0 20.0

17.1 11.7

18.0 20.7

18.0 20.0

18.5 29.6

18.9 19.8

19.0 29.0

19.1 19.2

19.4 36.0

20.0 36.0

20.1 28.2

20.2 45.1

21.0 45.0

21.4 45.8

21.8 35.7

22.0 45.0

22.1 44.9

22.3 55.2

23.0 55.0

23.6 44.1

24.0 45.5

24.0 45.0

24.3 61.8

24.7 54.7

25.0 61.0

25.3 67.8

25.9 55.0

26.0 67.0

26.8 67.1

26.9 60.5

27.0 67.0

27.4 70.0

28.0 71.0
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Algorithms

We can plot the data points.
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Algorithms

Predicting the future.  The client says “If we spend, say, £20K with 

you, how much additional profit will be see?”

What do we do?
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Algorithm Choice
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We can fit a line to the data.  

Which do you think is the best 
line to use in order to:

• understand the data better

• see the patterns within it

• make predictions about 
future data?

(If you can answer this correcty
then you understand the 
general principle of 
‘overfitting’).
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Algorithm Choice
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Machine Learning

Now adding a line of best fit to a graph is something we 

probably all did in school.  

But that simple act is a wonderfully elegant example that 

encompasses so much that is characteristic of algorithms in 

Data Science.  Linear regression is the algorithm and what 

we did is not only an example of using an algorithm it is 

also an example of Machine Learning (ML). 
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100.0

15.0 20.0 25.0 30.0

© Mark Whitehorn



Machine Learning

Where we use an algorithm to ‘learn’ a pattern 

that is inherent in some existing data.  That 

pattern can then used to make predictions about 

data that has not yet been analysed.
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Data modelling (no, not that kind)

Better still, in formal terms, our line is a data model.

(Note that the relational model is a data model, so is the dimensional model.  

But the term has another use as we are using it here.)  
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Data modelling

Training data              +         algorithm    = data model

Our XY Coordinates   + Linear regression = Line

We use the data model to predict the future.
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Linear Regression

Linear regression finds the ‘best’ relationship 

between X and Y.  To put that another way, it 

produces the values of Y from the X values 

with the least error. 
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Data modelling

Models are characteristically much smaller than the training data.

The line can be defined as an equation of the form:

y = mx +c

In our case it is:

y = 5x - 67

This is tiny compared to the 10,000 or 107 points that we could have 
used to train the model.

Yet this tiny, elegant, compact model can be used to predict future Y 
values given an X value.
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Data modelling

A client has £20K to spend so we can predict an increased 

profit of £33K.

y = (5 * 20) - 67 = 100 – 67 = 33
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Data modelling

Let’s just check.  Yup!  That looks intuitively correct.

X = 20

y = 33
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Data modelling

In practice we would always do extensive testing of our 

model and very often tweak it.  

Training data + algorithm = data model

Check model using test data

We have formal processes for this (ROC curves and so on).
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ROC curves

Emma and I talked about ROC curves yesterday.  If you 

missed the talk and I have now sparked your interest, 

check out the video.   
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Data modelling

Once we are happy it is good, we start to use the model.

Training data + algorithm = data model

Check model using test data

New data + data model = new information
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Example two.

We also have some insurance 

claims data.  BIP and TYS are 

complex measures of a claim, the 

result is whether we paid out or 

decided the claim was fraudulent.  

We have existing data on 2,000 

honest claims and 200 fraudulent.

BIP TYS Result

103 109 Paid

125 123 Fraud

117 121 Paid

123 115 Paid

113 119 Paid
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Example two.

What modelling algorithm would 

you suggest here?
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Example two.

What modelling algorithm would 

you suggest here?

Clustering!
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Example two.

Sometimes clusters are separated, sometimes they overlap.  

Let’s take the harder case where they overlap.  What is our data 

model and how do we use it to assign a case to new data?
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Clustering

Let’s talk zombies.

Any given cluster 

will have some 

distribution in each 

dimension.
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Clustering

Same for the other one.
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Clustering

A
b
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e
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e
l
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So we can use the 

distributions to assign 

probabilities to new 

points.

What is the model here?  



Clustering

So we can use the 

distributions to assign 

probabilities to new 

points.

What is the model here?  

It is simply the mean 

and the standard 

deviation of the four 

distributions.

A
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e
v
e
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Data modelling

Training data              +  algorithm    = data model

Our XY Coordinates   + Clustering    = Cluster

plus the classification                            distributions
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More about efficiency

We can say that 69% 

of the healthy people 

have an Ab of 105 or 

below and that 31% 

of them have an Ab 

> 105.  

70      80      90     100    110    120    130   140

Healthy

Ab level

0.69               0.31
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More about 
efficiency
If we assume that 

the two factors are 

independent (which 

seems reasonable) it 

is then to calculate 

the numbers.
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0
.6

9
  

  
  

  
  

  
  
 0

.3
1

H
e
a
lt

h
y

Healthy© Mark Whitehorn



More about 
efficiency
If we assume that 

the two factors are 

independent (which 

seems reasonable) it 

is then to calculate 

the numbers.

Does this look 

right?
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More about 
efficiency
The effect is easier if 

we increase the 

number of patients 

to 10,00.  Note I am 

plotting the healthy 

patients last so that 

they overlay the 

infected.  But that is 

OK, we are 

estimating the 

healthy ones.

0.69               0.31
0
.6

9
  

  
  

  
  

  
  
 0

.3
1

H
e
a
lt

h
y

Healthy

0.48               0.21

0.21               0.1



More about 
efficiency
Even easier if we 

lose the infected 

patients.
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Constrained clustering

Data points can be related in two ways - must-link and 

cannot-link.

Points related by a must-link have to be in the same cluster, 

those related by cannot-link must not be in the same 

cluster.  Constrained clustering algorithms understand these 

relationships and are used to look for clusters.  
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Constrained clustering

Clearly sets of data can be constructed that are impossible to 

cluster.  

A – must-link – B

B – cannot-link – C

C- must-link - A

Some constrained clustering algorithms abort when presented 

with this data, others find the minimum constraint violation.
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Clustering algorithms
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So, what is an algorithm?????

Is it “clustering” or “K means”?

Both.

So, let’s talk about K means as a specific example 

of a clustering algorithm.
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K means clustering

Given a set of observations (x1, x2, …, xn), where each 
observation is a d-dimensional real vector, k-means 
clustering aims to partition the n observations into k (≤ 
n) sets S = {S1, S2, …, Sk} so as to minimize the inter-
cluster sum of squares (ICSS) (sum of distance functions 
of each point in the cluster to the K centre). 

https://en.wikipedia.org/wiki/K-means_clustering

Now, I understand that this explanation won’t work for 
everyone so:
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K means clustering

in other words, its objective is to find:

where μi is the mean of points in Si.

https://en.wikipedia.org/wiki/K-means_clustering
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K means clustering

Time for some board work 

(Except I guess there isn’t going to be a 

board)

Time for some arm waving
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K means clustering

iris

newiris <- iris

newiris$Species <- NULL

newiris

kc <- kmeans(newiris, 3)

kc

table(iris$Species, kc$cluster)

plot(newiris[c("Sepal.Length", "Sepal.Width")], col=kc$cluster)

points(kc$centers[,c("Sepal.Length", "Sepal.Width")], col=1:3, 
pch=8, cex=2)

http://www.rdatamining.com/examples/kmeans-clustering

Author Yanchang Zhao

© Mark Whitehorn
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K means clustering

K means is an heuristic algorithm which 

means that……. 
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K means clustering

K means is an heuristic algorithm which 

means that the end result is not known as 

each step proceeds.  (Think about playing 

chess; all chess playing is heuristic.)  K 

means is also stochastic.
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K means clustering

There is no guarantee that one run will actually 
find the optimal solution; it can depend on 
where the initial points are placed.  

So the algorithm is often run multiple times.  
However it can be slow to converge and there 
are known sets of points (even in two 
dimensions) that are particularly troublesome.  

However, in practice, it is a very good 
algorithm.      
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Decision Trees

History

• J Ross Quinlan introduced a decision tree algorithm called ID3
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Decision Trees

Used to assign each case to one of several categories

Explains the classification – which variables are used

Decision trees are easy to understand

Often used for the prediction of values of the variables 
explained
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Decision Trees

The process is essentially one of recursive partitioning
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Decision Trees

Decision trees tries all possible splits using all possible 

values of each input attribute

Chooses the most effective split as the first

Several ways of measuring the efficacy of the split – one of 

which is frequency distribution and another is entropy –

look up entropy in this context
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Decision Trees

Are all splits binary?

No – eye colour

But any algorithm that can perform a binary split can also 

split on multiple factors

62© Mark Whitehorn



Decision Trees

Algorithm design……

• Avoid splits leading to one member

• Watch high cardinality predictors

• What happens if customer name is used as a predictor?

• What happens with post code?

• Should you look for hierarchies?
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Decision Trees

#Libary

library(rpart)

library(readr)

titanic <- read_csv("~/2018/QA/PWC/titanicdecisiontrees.csv")

tree <- rpart(survived ~ pclass + sex + age + sibsp + parch + fare + embarked,

data=titanic,

method="class")

plot(tree, uniform=TRUE, 

main="Titanic")

text(tree, use.n=TRUE, all=TRUE)

str(tree)
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658

Males

21%

385

Females

74%

1043 

Passengers

41% survived

615

‘Adult’

19%

43

‘Young’

51%

16

‘Big family’

6%

27

‘Small family’

78%

151

3rd class

48%

234

1st/2nd class

91%

21

Expensive fare

14%

130

Cheap fare

53%

Titanic
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Decision Trees

Input is a table, in this case about insurance claims.

Decision trees tries all possible splits using all possible values of 
each input attribute.

ID Local People Injury Time Police Fraud

1 Yes 2 No 17:35 No No

2 No 2 No 12:06 Yes No

3 Yes 2 No 16:45 Yes No

4 No 4 Yes 19:45 No Yes
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Decision Trees

67

4%

Fraudulent

(100/2,500)

30%

(31/98)

2.8%

(69/2,402)

22%

(4/18)
62%

(18/29)

17%

(9/51)

95%

(18/19)

0%

(0/10)
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Consolidation 

Algorithms are ways of solving problems, not the code 

itself (that is simply an implementation issue).

They are often underpinned by complex maths/statistics.  

But we don’t need to understand this in order to use them.   

BUT choosing the correct algorithm is crucial.  Many 

people don’t.  So we do need to understand (in plain 

English) how algorithms work, what they are trying to 

achieve.

© Mark Whitehorn



Consolidation

Many algorithms been prewritten and form the “Data 

Mining Hall Of Fame”.  These are often seen as the “Data 

Science” algorithms and, indeed, the “Machine Learning” 

algorithms.

But very often, in my experience, these are simply a 

framework upon which to start building.
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Consolidation

Often we use the existing algorithms (e.g. clustering) to 

create a data model.  And then use that to build further 

models, for example RFI Recency, Frequency and Intensity.
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Consolidation

I have shown 2 dimensions in my examples.  But often we 

have far more.  The maths get a little more complex but, 

oddly, not exponentially so for each dimension.

The data we use (the xy coordinates I have shown so far) 

can be called vectors.  This is a good way to think about 

them as we look at more complex algorithms.   

We have looked at linear regression, clustering and 

decision trees.  Let’s look at some more algorithms.
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Quick overview of Techniques

Data mining techniques

• Clustering 

• Classification

• Decision trees

• Regression

• KNN

• Segmentation

• Association

• Sequence analysis

• Neural nets
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KNN (K Nearest Neighbour)

Suppose that we have some two 

dimensional data that also has a binary 

classification (such as male - female).    
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KNN (K Nearest Neighbour)

We want to use it for prediction (given 

these X,Y values, what is the gender?).

We might draw a line:
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KNN (K Nearest Neighbour)

But suppose that the data is less 

cooperative.  Let’s zoom in:
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KNN (K Nearest Neighbour)

Take the direct line between two points, 

find the mid point
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KNN (K Nearest Neighbour)

Extrapolate at right angles
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KNN (K Nearest Neighbour)

repeat
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KNN (K Nearest Neighbour)

consolidate
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KNN (K Nearest Neighbour)

Zoom out
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KNN (K Nearest Neighbour)

So the unknown data point would be 

classified as Blue.
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KNN (K Nearest Neighbour)

Here it would be classified as Red.  

Do we actually like this choice?
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KNN (K Nearest Neighbour)

That’s OK, we have options! 

So far we have been using one neighbour.  
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KNN (K Nearest Neighbour)

What if we choose three?  Answer: this 

green point would be classified as blue.
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KNN (K Nearest Neighbour)

The K is simply the number of nearest 

neighbours you want to use.  What is the 

correct number?  

I don’t know but it had better be odd.
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Support Vector Machines

These help to separate out data.  More 

accurately, they allow us to separate data 

that is somewhat interwoven more easily. 

Imagine that we have some vectors that 

describe some data. 
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Support Vector Machines

SVMs projects your data into higher 

dimensions in order to create/derive/learn a 

hyperplane which can separate your data 

into two classes.
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Support Vector Machines
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Support Vector Machines
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Support Vector Machines
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Support Vector Machines
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Support Vector Machines
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Support Vector Machines

But why are they called SMV?

The hyperplane fits between the two classes but 
there is always a ‘nearest’ red dot and blue dot.  
These balls are considered to be the vectors 
that support the hyperplane.  Their distance to 
the hyperplane is called the margin. The SMV 
keeps the margins identical and (obviously) 
tried to maximise them.
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• The output from each neuron is binary, either it fires or it doesn’t

Real Neurons



• The input to the target neuron can have many states. 
Perhaps the first input neuron is triggered, or the 
second, or the first and the third together and so on

• Some input combinations will fire the target neuron, 
others won’t. So, while the output of each neuron is 
binary, the input isn’t because many neurons can 
act as input to one neuron   
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If we can 
characterise 
this behaviour 
in some way 
then we can 
adapt it for 
use in ANN

Real Neurons



• Each input neuron can provide an input (X) 
which is binary (it is either 0 or 1), but they 
have differing effects. That is, some can 
cause the target neuron to fire on their own, 
others can’t

• We can add a “weight” (W) to model this. 
The higher the value of the weight, the 
greater the influence the input neuron has 
on the chance of the target firing

• These inputs, times their respective weights, 
are collected together in some way. For the 
sake of simplicity, we will sum them

• The summed value (S) either does, or does 
not, exceed the threshold (T). If it does, the 
neuron fires with output Z which is, again, 
binary

Modelling real Neurons
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We set the threshold to zero and render 
it non-binary. It is smoothed (typically as 
a sigmoid function but others 
are used)

One reason we make these changes is so 
that we can make use of 
backpropagation. (Paul Werbos 1974). 
We will look at why we want to use 
backpropagation later

So both output and input are now 
continuous, in fact, all the values are now 
continuous

Neurons in an Artificial Neural Network
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Neural Networks

Sepal Sepal Petal Petal Species

Length Width Length Width

5.1 3.5 1.4 0.2 setosa

4.9 3 1.4 0.2 setosa

4.7 3.2 1.3 0.2 setosa

4.6 3.1 1.5 0.2 setosa

7 3.2 4.7 1.4 versicolor

6.4 3.2 4.5 1.5 versicolor

6.9 3.1 4.9 1.5 versicolor

5.5 2.3 4 1.3 versicolor

Σ
Z (Output)

Let’s look at a very simple neural network consisting of just two neurons. This 
is clearly unrealistic but it shows the principles very well. We will use a classic 
set of data for this, the so-called Iris Data

We’ll focus on just the first two dimensions, sepal length and width. 



Let’s look at a very simple neural network consisting of just two neurons. This 
is clearly unrealistic but it shows the principles very well. We will use a classic 
set of data for this, the so-called Iris Data

We’ll focus on just the first two dimensions, sepal length and width. First we 
normalise the data
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Sepal Sepal Petal Petal Species

Length Width Length Width

5.1 3.5 1.4 0.2 setosa

4.9 3 1.4 0.2 setosa

4.7 3.2 1.3 0.2 setosa

4.6 3.1 1.5 0.2 setosa

7 3.2 4.7 1.4 versicolor

6.4 3.2 4.5 1.5 versicolor

6.9 3.1 4.9 1.5 versicolor

5.5 2.3 4 1.3 versicolor

Sepal Sepal Species

Length Width

0.51 0.875 setosa

0.49 0.75 setosa

0.47 0.8 setosa

0.46 0.775 setosa

0.7 0.8 versicolor

0.64 0.8 versicolor

0.69 0.775 versicolor

0.55 0.575 versicolor

Σ
Z (Output)



Sepal Sepal Species

Length Width

0.51 0.875 setosa

0.49 0.75 setosa

0.47 0.8 setosa

0.46 0.775 setosa

0.7 0.8 versicolor

0.64 0.8 versicolor

0.69 0.775 versicolor

0.55 0.575 versicolor

• The new values become the input values for the two input neurons

Neural Networks

Σ
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Sepal Sepal Species

Length Width

0.51 0.875 setosa

0.49 0.75 setosa

0.47 0.8 setosa

0.46 0.775 setosa

0.7 0.8 versicolor

0.64 0.8 versicolor

0.69 0.775 versicolor

0.55 0.575 versicolor

The new values become the input values for the two input neurons

The two weight (W1 and W2) are set to random values between -1 and +1

W1 = 0.4

W2 = -0.65

Neural Networks

Σ
Z (Output)

0.875

0.51

0.0185 0.513



Sepal Sepal Species

Length Width

0.51 0.875 setosa

0.49 0.75 setosa

0.47 0.8 setosa

0.46 0.775 setosa

0.7 0.8 versicolor

0.64 0.8 versicolor

0.69 0.775 versicolor

0.55 0.575 versicolor

Let’s say that we arbitrarily chose that we want an output value of 0 to 
indicate versicolor and 1.0 to indicate setosa. We can’t change the input 
values, but we can change the weights. 

Neural Networks
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Sepal Sepal Species

Length Width

0.51 0.875 setosa

0.49 0.75 setosa

0.47 0.8 setosa

0.46 0.775 setosa

0.7 0.8 versicolor

0.64 0.8 versicolor

0.69 0.775 versicolor

0.55 0.575 versicolor

So we alter them slightly to get closer to the number we want. We go 
through all of the data and keep cycling through it, gradually adjusting the 
weights until we arrive at weight values that give us the best separation of 
the data 

Neural Networks
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In practice, with our tiny neural net, it would be ridiculous to try to get a 
reasonable separation, there are simply not enough pathways. But that is OK, 
we can solve that problem by adding more neurons.  And this is what we do 
in modern neural nets

Neural Networks



Modern neural networks can be built in many ways, we will describe a common way

The neurons are layered and the layers named as shown

Neurons are connected to every other one in the preceding and succeeding layers

Data is fed into the input neurons, output is read from the output neurons

Neural Networks

Input Hidden Output



In practice there can 
be (and often are) 
multiple hidden layers

Neural Networks



So, the good news is that we have more pathways and more weights to 
adjust. The downside is that the number of possible combinations of weight 
values explodes. There is a trade off here. We need large numbers of weights 
to give the separation but the number we need to do the job is so large that 
there are billions/trillions of combinations of values. Finding the 
combinations of weights that best separate the data effectively is very hard; 
too hard to do by simply running through all the possible combinations

This problem effectively stopped the development of neural nets for a long 
time. Happily, in 1974 Paul Werbos, working at Harvard, introduced the idea 
of back propagation in his PhD thesis. However this took a while to be 
adopted

Neural Networks



Data is fed into the input neurons

Imagine that you want to look for insurance fraud. You remember this data 

(I’ve removed the Postcode column)

Neural Networks

Input columns

Target

column

CaseID Date of Theft Time of Theft Value of Items Number of Items Fraud

1 23/01/2019 11:30 £350 7 No

2 23/01/2019 12:50 £750 9 No

3 23/01/2019 13:45 £1,230 2 Yes

4 23/01/2019 14:40 £540 3 No

5 23/01/2019 14:50 £450 7 No

6 23/01/2019 15:20 £300 5 No

Etc. Etc. Etc. Etc. Etc. Etc.



We will essentially set up a neural net with one input neuron for each input column. The 
values in these columns are complex and certainly drawn from different domains. So we 
will normalise them

There are many different ways of normalising the data   

Neural Networks

Input columns

Target

column

CaseID Date of Theft Time of Theft Value of Items Number of Items Fraud

1 0.654 0.453 .323 0.35 0

2 0.654 0.463 .654 0.45 0

3 0.654 0.532 .850 0.1 1

4 0.654 0.567 .453 0.15 0

5 0.654 0.617 .398 0.35 0

6 0.654 0.633 .254 0.25 0

etc etc etc etc etc etc



The normalised data is fed into the input neurons. Before training it might look like this  

Neural Networks
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Blue = positive values

Red = negative

Intensity = approximate value



after training like this

Neural Networks

Date

0.654

Time

0.435

Value

0.323

Numbe

r
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Blue = positive values

Red = negative

Intensity = approximate value



1944 - Neural networks were first proposed at the University of Chicago by Warren 
McCullough and Walter Pitts. These early neural nets had weights and thresholds but 
no layers. There was also no training mechanism. McCullough and Pitts demonstrated 
that, in principle, a neural net mimicked how a human brain worked and that a neural 
net could do the same computation as a digital computer. Thus they drew the 
comparison between the brain and the machine

1952 - McCullough and Pitts moved to MIT as part of the team that formed the 
cognitive science department

1957 – The world’s first trainable neural network (the Perceptron) was created by the 
psychologist Frank Rosenblatt at Cornell University. It had adjustable weights but only 
one hidden layer.  Perceptrons were actively studied in both computing and 
psychology until 1959

Neural Networks



1959 - Marvin Minsky and Seymour Papert (mathematicians at MIT) published a book 

(Perceptrons) which essentially argued that performing some common computations 

on Perceptrons was going to be far too time consuming. It is argued that this book 

destroyed the interest in neural nets at that time. Minsky and Papert went on to 

become the co-directors of the new MIT Artificial Intelligence Laboratory

1974 – Paul Werbos, Harvard. PhD thesis. Introduced backpropagation

1980s - Neural nets had a resurgence and then again disappeared

1986 - Learning representations by backpropagating errors, Nature 323, 533-536 (9 

October 1986) David E. Rumelhart, Geoffrey E. Hinton & Ronald J. Williams (This will 

ultimately make neural nets computationally viable)
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2010 – MIT seriously considered dropping neural nets from the AI syllabus. 

Many felt that neural models were not a good representation of the brain 

and no neural nets had done anything useful anyway. One reason MIT 

decided not to drop it was to ensure that students knew about them and 

would not waste time reinventing them

2012 – Geoffrey Hinton (great-(great?)-grandson of George Boole!) published 

a paper about picture recognition that stunned the world and showed, once 

and for all, that neural nets could do very serious work. Since then they have 

become a mainstay of machine learning

Neural Networks



Now, of course, neural networks (and, indeed, our brains) are stuffed with neurons. But we can think of 
them as simply a collection of weights and thresholds

They have a large number of inputs (X) and those produce outputs (Y)

Which means that we can think of the entire network simply as a function. The output is a vector of Y values 
which is a function of the input vector (VX), the weights vector (VW) and the thresholds vector(VT)

VY = f (VX, VW, VT)

We cannot alter the input vector but we can alter the weights and the thresholds in order to get the output 
vector we desire

Neural networks are simply a complex 
function

WeightInput X1

Input X2

Input Xn

Output Y1

Output Y2

Output Yn



Bias

Input

Hidden

Bias

• We have describe neural nets as having simply weights and measures and this can be true. However it 

is also possible that the model may include a bias. This is simply a constant that is added to the 

calculation. The effect of adding a bias is essentially to move the activation function. This is sometimes 

helpful in speeding up learning. The bias values are also multiplied by a weight

1.0 1.0

Output



• The weight is used in the usual way

Bias

Sepal Sepal Species

Length Width

0.51 0.875 setosa

0.49 0.75 setosa

0.47 0.8 setosa

0.46 0.775 setosa

0.7 0.8 versicolor

0.64 0.8 versicolor

0.69 0.775 versicolor

0.55 0.575 versicolor

Σ
Z (Output)

0.875

0.51

0.459 0.62

1.0



Thank you for listening

FEEDBACK!!!!!!!!!
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