@ by i

Warehouse

Azure SQL .
DataWarehouse ' L\
Performance and '
Malntenance

Presented by Robin Lester

an \
m Microsoft

...........

P e s

X

Where does SQL Data Warehouse fit?

>QL Server VM Azure SQL Database Ao S D Azure Data Lake
(EED) Warehouse

The move to the clouad

Parallel Data Azure SQL Data
Warehouse Warehouse
O O
Analytics Platform nm
System E'A'AE

s 250,000 -> £1 Mil rom £320 FEM

Architecture

« One control node
« 1-60 compute nodes
« 60 Databases

Control Node

Compute Node Compute Node
Worker.DW Worker.DW Worker.DW

PDW Service DMS PDW Service DMS PDW Service DMS
SQL Server SQL Server SQL Server

_ 7\ AN

Remote Storage

31 32

Service Level Objectives
¢ AS DW haS 60 SQL AZUI”G DTU Compute distributio

nodes ns

Databases. The higher the scale pwioo T %

the larger number of separate pwaoo 1500 2 60

Scan Rate Load Rate Cost

|O|E 1M Rows/sec 15K Rows/Sec 1x
200 2M Rows/sec 30K Rows/Sec 2X

o D&l 3M Rows/sec 45K Rows/sec 3X

of # of

detach and attach when scaling o ———(—————
DW1500 11250 15 60

To calculate the number of compute
nodes divide DWU by 100 DW2000 15000 20 60
6000/100 = 60 DW3000 22500 30 60
1200/100 = 12 DW6000 45000 60 60

Mapping Compute in SQLDW

DW100

Mapping Compute in SQLDW

DW200

Mapping Compute in SQLDW

DW300

o) P WORl WZY WSl WOl WA Wil W 10 11 12

Mapping Compute in SQLDW

DWA400

o) P WORl WZY WSl WOl WA Wil W 10 11 12

Mapping Compute in SQLDW

DW500

o) P WORl WZY WSl WOl WA Wil W 10 11 12

Pausing compute in SQLDW

DW500 Savings from Pause

Paused Weekends = 28%

Paused Nights = 35% A 27 A R 24

36
40 hour week = 75%

46 B 47 R 48

53 59 A 60

Resuming compute in SQLDW

DW500

Simple Distributed Query

SELECT COUNT_BIG(*)
FROM dbo.[FactInternetSales];

SELECT SUM(*)
FROM dbo.[FactInternetSales];

Control
A " A A
SELECT COUNT BIG(*) SELECT COUNT BIG(*) SELECT COUNT BIG(*) SELECT COUNT BIG(*)

FROM dbo.[FactInternetSales] FROM dbo.[FactInternetSales] FROM dbo.[FactInternetSales] FROM dbo.[FactInternetSales]

= = = =

Optimized for Elasticity Optimized for Compute

Q B 2 o = = T O a = <
28 _ .9 _2& @ ¥ 59@ 28 .o %% & ¥ §gb@
2= 9 5 2538 308 - 5 0= 03 = @[A=T I PO
2E5 88 B23F 37%385:3 2883 B3F BERi8Zsi
Service @ © - 20 g- g S g g Service © % - gg o 9 § & o
level - il C . ® < level ® @ 5 < <
DW100 4 : 60 400 24 DW1000c 32 2 30 10 600
DW200 8 2 30 800 48 DW1500c 32 3 20 15 900
DW300 12 3 20 1,200 72 DW?2000c 32 4 15 20 1200
DW400 16 4 15 1600 96 DW2500c 32 5 12 25 1500
DW500 20 5 12 2000 120 DWw3000c 32 6 10 30 1800
DW600 24 6 10 2400 144 DW5000c 32 10 6 50 3000
DW1000 32 10 6 4000 240 DW6000c 32 12 5 60 3600
DW1200 32 12 5 4.800 288 DW7500c 32 15 /| 75 4500
DW1500 32 15 4 6000 360 DW10000c 32 20 3 100 6000
DW2000 32 20 3 8000 480 pwis000c 32 30 2 150 9000
DW3000 32 30 2 12,000 720
DW30000c 32 60 1 300 18000
DW6000 32 60 1 24,000 1440

Optimised for Compute

Control Q
m@@@@@@

Remote
Storage

Intelligent
Cache

Non-Volatile
Memory
Express
(NVMe) Solid
State Disk
cache

Intelligent Cache (Optimized for compute)

2.5x more memory on nodes

Faster cores

Local NVMe SSD locally on node

Columnstore segments can be stored in the cache so closer to compute.

* Improvements can go up to 100x

Columnstore data has now infinite size (previously caped 1.2 PB)

Loading data

Architecture for Loading — SSIS or BCP

SQL Server
On-Prem Worker1

) Worker2

SSIS or BCP
or BC _ﬁ Worker3

Worker4
Worker5

Not currently Worker6
a parallel
operation

Parallel Loading — SSIS or BCP

SSIS or
BCP

Worker1

Worker2

Worker3

Worker4

Worker5

Worker6

Architecture for Loading - Polybase

Azure Storage
Blob(s)

Worker1

Polybase / Worker2
External)

Worker3
Table

Worker4

Worker5

Fully parallel operation Worker6
No concurrency bottleneck
(on number of nodes)

Data |Oad | ﬂg Exception - If target

table is clustered
index or non

Max Wr clustered index
maximum writers Is

Max External
Readers

Use DW100 60
mediumrc+ Bxigg ;j 28
for high DWU |umsvomn 32 60
loads DW500 40 60
DW600 48 60
DW1000 80 80
DW1200 96 96
DW1500 120 120
DW2000 160 160
DW3000 240 240

DW6000 480 480

Loading Data - Table Design Choices

Moving 30 min rows into three different table distribution types

30 mln rows movement
2000

1500

1000

Time

500

0 —]

Hash Distributed Round Robin Replicated
Table Type

Loading Data - Index Design Choices
Moving 30 min rows into three different index types

30 mln rows movement
300

Time to build
250 CCI

200

Ccl Heap Clustered Index

150

100

50

0

B Time M Clustered Index

Taples

Table Distribution Options

Selecting the right distribution method is key to good performance

Hash Distributed Round Robin Replicated
(Default on SQL DW) (Default on PDW)

Data divided across nodes based on Data distributed evenly across nodes B Data repeated on every node of the

hashing algorithm appliance
Easy place to start, don't need to

know anything about the data Simplifies many query plans and

Same value will always hash to same
reduces data movement

distribution .
Useful for large tables without a

good hash column Best for small lookup tables

Consumes 60X the space (SQL DW)

Optimal for large fact tables

Data Skew can be an issue when Will incur more data movement at

distributing on high frequency values iquery time

which represent a large percentage of
rows (e.g. NULL) Unable to perform PDW dwloader Joining two Replicated Table runs on

UPSERTSs one node

Slower DML

Hash Tables

Distributed Table DDL

CREATE TABLE aw.FactFinance(
FinanceKey int NOT NULL,
DateKey int NOT NULL,
OrganizationKey int NOT NULL,
DepartmentGroupKey int NOT NULL,
ScenarioKey int NOT NULL,
AccountKey int NOT NULL,

Amoun or: e \C
WITHC(DISTRIBUTION = HASH(FinanceKey));

Hash Distributed Example

1 | Name | city | Balance DMs
501|000 | wecison | _s3.000 Hashing

! Hach Fiinction (201 =» NDist DR 2
Hach Eiinectinn (MTNRY = NDict NR 2

Hash Functlon (933) -) Dlst DB 4

86 | Bob | Chicago | $180
633 Bob | London | so04
D i T

Watch out for Data Skew

Skewed Data Evenly Distributed Data

2,500,000 120.000
2,000,000 100,000
< £ 80,000
& 1,500,000 el
“6 Y
c © 60,000
v @
Rel o
£ 1,000,000 =
3
= > 40,000
500,000
20,000
0 | .
135 7 911131517192123252729313335373941434547495153555759 135 7 911131517192123252729313335373941434547495153555759
Distribution Distribution

Demo

Round Robin Tables

Round Robin Table DDL

CREATE TABLE aw.FactFinance(
FinanceKey int NOT NULL,
DateKey int NOT NULL,
OrganizationKey int NOT NULL,
DepartmentGroupKey int NOT NULL,
ScenarioKey int NOT NULL,
AccountKey int NOT NULL,

Amoug o4 N'C e
WITHC(DISTRIBUTION = ROUND ROBIN);

Round Robin Example

Y
N
ID | Name Dist DB 1
201 | Bob
220 | Sally
86 Bob | ..
N~
Y
Data File 1D Name/ .
105 | sue Dist DB 2
ID [Name City Balance 600 | Larry
201 | Bob | Madison | $3,000 w
105 Sue San Fran $110 >
933 Mary Seattle $40,000 T
150 [George Seattle $60 ~—_
220 | Sally | Mtn View $990 1D | Name Dist_DB_3
600 | Larry | Palo Alto | $1,001 233 | Mary
750 [Anne | ..
750 Anne L.A. $22,000 { 19 |Georgel ..
50 Liz NYC $2,200
86 | Bob | Chicago $180 Q
630 Bob London $994 5 | Name
19 [George Paris $3,105 150 | George Dist DB 4
320 Jeff Madison $0 50 Liz
(e L)

Replicated Taples

Replicated Table DDL

CREATE TABLE aw.FactFinance(
FinanceKey int NOT NULL,
DateKey int NOT NULL,
OrganizationKey int NOT NULL,
DepartmentGroupKey int NOT NULL,
ScenarioKey int NOT NULL,
AccountKey int NOT NULL,

Amoug oF IO I
WITHC(DISTRIBUTION = REPLICATE);

Replicated Example

Dist_DB_1
PDW Only Feature
Coming to SQL DW Soon

™ [ip: Dist_DB_2
0l |f you join two replicated tables together you are no
105 .
w1 lONger using an MPP system
150 eattle b
220 Sally Mtn View $990 Dist DB 3
600 | Larry Palo Alto $1,001
750 | Anne L.A. $22,000
50 Liz NYC $2,200
86 Bob Chicago $180
630 Bob London $994
19 | George Paris $3,105 .
320 Jeff Madison $0 Dist_DB_4

Partitioning Tables

DDL Example of Partitioning

CREATE TABLE aw.FactFinance(
FinanceKey int NOT NULL,
DateKey int NOT NULL,
OrganizationKey int NOT NULL,
DepartmentGroupKey int NOT NULL,
ScenarioKey int NOT NULL,
AccountKey int NOT NULL,
Amount float NOT NULL)
WITH (DISLE HASH(FinanceKey’),
PARTITION (DateKey RANGE RIGHT FOR VALUE
(20100101,20200101,20300101))

)5

Optimizing with Partitioning

Performance optimizations include...

Typically partition on date column

Improves performance of predicates

Optimize load performance and data management through partition switching, merging and
splitting

Re-indexing by partition
Too many partitions can slow things down quite a bit.

Do not over-partition Clustered Columnstore Tables

ASDW 1= ASDB

Compression

o Columnstore

« Standard column store compression (~5x)
« Improved with DATA_COMPRESSION = COLUMNSTORE_ARCHIVE

« Rowstore

« Page compression on by default
» Can not be turned off

Read Uncommitted }

A C

« Atomicity Consistency * Durability
« Requests will complete « Database will move » Once a transaction has
or fail as a single unit from one legal state to committed it will

another remain so

Transactions

* [ransaction Limitations

« No distributed transactions

« No nested transactions permitted

« No save points allowed

« No DDL (Create Table etc) inside a transaction

» Avoid long running transactions
« Read uncommitted transactions

HA DR

As a benefit of using Azure Premium Storage, SQL Data
Warehouse uses Azure Storage Blob snapshots to backup
the primary data warehouse.

» For high availability dual load the data into two ASDW
e SLA 99.9% (43 minutes a month)

Columnstore

Columnstore Index

Data stored as rows Data stored as columns

1 c2 a3 C4 c5
I I I I I } o
Y}

|deal for OLTP |deal for Data Warehouse

segment
Improved compression: Improved Performance:
Data from same domain compress ~ More data fits in memory
better Optimized for CPU utilization
Reduced 1/0O:. Batch Mode Execution

Fetch only columns needed Vector Processing

Columnstore

e Performance Demo

Why use column store?

« Query Performance
- Several orders of magnitude greater

« Data Compression
» Less space on disk and in memory

 Low index maintenance / optimisations / designs
« Only one index required

Query Processing - Read The Data Needea

SELECT ProductKey, SUM (SalesAmount)
FROM SalesTable
WHERE OrderDateKey < 20101108

00000000

00000000

00000000

Segment
Elimination

Column Elimination

Columnstore health

 Tmillion is gooa
 >1700,000 is acceptable
« <100,000 is bad

 Updating/Deleting/Inserting = deltastore/rowstore
partition

Batch loading

< 102,400 will go to the rowstore

=> 102,400 will go straight to
columnstore

60 distributions
« 60 * 102,400 = 6,144,000

60 distributions with 4 partitions
« 60*4*102,400 = 24,576,000

102,400 will stay as compressed
segments

Less that this will build up into
CLOSED partitions (1048576 rows)

« Tuple Mover will come along and move to
COMPRESSED

« Separate dictionary object
Demo

Compressed RGs

Delta RGs
| [N
| [
— I
|
|
|
Closed Open
Tuple Batch Size < 100k
Mover

Batch Size >=
100k

union all

locator not in

II/I

Compressed Delete
rowgroups bitmap

Deltastores

Data batch load

Tuple Mover kicking in
to compress the data as
it loads

Total database size Past week

1468

I TOTAL DATABASE S8

13. 37“

Columnstore in Azure SQL Datawarehouse

sys.pdw_nodes_column_store_row_groups

- State of various row groups (open, closed, compressed)
- Total rows

sys.pdw_nodes_column_store_segments

« Encoding used
« Dictionary id
« Min,max metadata

sys.pdw_nodes_column_store_dictionaries

« On disk dictionary size

sys.dm_pdw_nodes_db_column_store_row_group_physical_stats

« Current rowgroup-level information about all of the columnstore indexes

Maintenance Demo

Columnstore in Azure SQL Datawarehouse

« SELECT * FROM
sys.dm_pdw_nodes_db_column_store_row_group_physical_
stats ORDER BY trim_reason_desc DESC

1 - NO_TRIM: The row group was not trimmed. The row group was compressed with the
maximum of 1,048,476 rows. The number of rows could be less if a subsset of rows was
deleted after delta rowgroup was closed

2 — BULKLOAD: The bulk load batch size limited the number of rows.

3 — REORG: Forced compression as part of REORG command.

4 — DICTIONARY_SIZE: Dictionary size grew too big to compress all of the rows together.

5 — MEMORY_LIMITATION: Not enough available memory to compress all the rows
together.

6 — RESIDUAL_ROW_GROUP: Closed as part of last row group with rows < 1 million during
index build operation

Performance

SQL DW Workload

SQL DW is designed for DW and not OLTP. All the traditional DW workload characteristics
apply

« Not good for singleton DML heavy operations, Example: Clients issuing singleton update, insert, delete (Not for
chatty workload)

Incremental data is loaded regularly by ETL/ELT process in batch mode. Not optimal for real

time ingestion

DW workload typically considers to be tier-2 SLA

Low number of concurrent queries

Concurrency

Concurrency queries

« 1,024 concurrent connections
- Max 32 concurrent queries at the same time

« A query will take up 1 or more concurrency slots

« Based on
« DWU level of the ASDW
« Resource class

Concurrency slots

* Increased with DWU
- If max concurrent queries or max concurrency slots are reached query will be queued

Concurrency Slot DW DW |DW DW
Consumption 400 600 000 000

Max Concurrent Queries
Max Concurrency Slots 4 8 12 16 20 24 40 48 60 80

Concurrency

« Workload Management

» Roles
« Smallrc (By default, each user is a member of the small resource class, smallrc)

[] I H
med iumrc c“:?l)c(:lTrl::t Con::.lor trsency Slots used by | Slots used by | Slots used by | Slots used by
o |a rgerc Tueries allocated smallrc mediumrc largerc xlargerc
2 4
8

4 4

1 1
e Xlargerc
g 8 8 1 2 4
12 12 1 2 4 8
DW400 16 16 1 4 8 16
20 20 1 4 8 16
DW600 24 24 1 4 8 16
DW1000 32 40 1 8 16 32
32 48 1 8 16 32
32 60 1 8 16 32
DW2000 32 80 1 16 32 04
DW3000 32 120 1 16 32 04
DW6000 32 240 1 32 04 128

Static Resource Classes

« Static memory assignment and concurrency slots
» Better control over user resource usage when scaling

* InCrease concurrency
« More granularity over resource consumption

Static Resource Classes

DW100
DW200
DW300
DW400
DW500
DW600
DW1000
DW1200
DW1500
DW2000
DW3000
DW6000

Maximum
concurrent
queries

Concurrency
slots
allocated

8
12
16
20
24
40
48
60
80
120
240

R W U NS Wy U N G U QR W L (S W L U I W N

(DO TEEN O Rl \ O I O R) O Bt O R) O Bt 0O Rl) O R \ O Bl \O Rl \ O

B I S L S - S N - S - N S S N

0 OO O O O O O 0 0 © o0 H

4
8
8

16

16

16
16
16
16
16
16
16

4
8
8
16
16
16
32
32
32
32
32
32

staticrc70

4
8
8
16
16
16
32
32
32
64

64
64

4

8

8

16
16
16
32
32
32
64

64
128

Resource Classes

40

100 100 200 0

100 200 400 800
100 200 400 800
DW400 100 400 800 1,600
100 400 800 1,600
DW600 100 400 800 1,600
DW1000 100 800 1,600 3,200
100 800 1,600 3,200
100 800 1,600 3,200
DW2000 100 1,600 3,200 6,400
DW3000 100 1,600 3,200 6,400
DW6000 100 3,200 6,400 DY DWU | staticrc10 | staticrc20 | staticrc30 | staticrc0 | staticrc50 | staticrc60 | staticrc70 | staticrc8o |
(DW100 [T 200 400 400 400 400 400 400
100 200 400 800 800 800 800 800
100 200 400 800 800 800 800 800
N 100 200 400 800 1,600 1,600 1,600 1,600
100 200 400 800 1,600 1,600 1,600 1,600
DW600 100 200 400 800 1,600 1,600 1,600 1,600
DW1000 [T 200 400 800 1,600 3,200 3200 3,200
100 200 400 800 1,600 3,200 3200 3,200
100 200 400 800 1,600 3,200 3200 3,200
100 200 400 800 1,600 3200 6400 6,400
100 200 400 800 1,600 3200 6400 6,400

DW6000 100 200 400 800 1,600 3,200 6,400 12,800

Hub and Spoke Model

HUB and Spoke Model

Azure A SQL DB
Source Systems Data Lake + SQL DW zuorre SS%S

Transformations Data Factory

/1N

Streaming or Store raw data Polybase to
Batch Data (TSV/ORC) SOL DW

Statistics

« ASDW does not automatically create or update statistics

« Create statistics on each column?
« Create statistics on multi column?

Out of date statistics

W Statistics Count of Rows MW Real Row Count

14
12
10
8
6

||||||||||\
0

N

50
40
30
20

10
0

Poor uniformity

B Num rows

Statistics

« Butisn't SQL DW just lots of SQL database. Why have
statistics been turned off?

e Demo
« Poor statistics can lead to

 Executing the wrong data movement operation
- Data movement on larger fact tables rather than dimension tables

 Executing the wrong data movement type

Jobs and Query Plans

Monitorjn~

Quen

QUERY TEXT
Show Query Text

QUERY PLAN

LOGIN
Rob

QUERY ID
QID1854

SESSION ID
SID59

RESOURCE CLASS
smallrc

Add tilec () 1 —
Lrnpleted
S... OPERATION LOCATION STARTTIME DURATION STATUS i
pmpleted
0 RandomIDOperation Control 4:00:32PM 00:00:00 Complete bmpleted
1 OnOperation Compute 4:00:32PM 00:00:00 Complete pmpleted
2 HadoopRoundRobinOperation DMS 4:00:33PM 00:00:03 Complete pleted
5 pleted
3 RandomlIDOperation Control 4:00:36 PM 00:00:00 Complete 7
4 OnOperation Compute 4:00:36 PM 00:00:00 Complete
pleted
5 ShuffleMoveOperation DMS 4:00:36 PM 00:00:00 Complete i
pmpleted
6 OnOperation Compute 4:00:36 PM 00:00:00 Complete
7 ReturnOperation Compute 4:00:36 PM 00:00:00 Complete
8 OnOperation Compute 4:00:36 PM 00:00:00 Complete

Jobs and Query Plans
« DMVs and viewing query plans

« Demo

<?xml version="1.8" encoding="utf-8"?7>

]<dsql_guery number_nodes="2" number_distributions="68" number_distributions_per_node="30">

1

<5
<d

FROM

FROM

ql>SELECT Crimetype, COUNT(Crimetype) FROM dbo.PoliceData GROUP BY Crimetype</sql>
sql_operations total cost="0.88632269632" total_number_operations="5">
<dsql_operation operation_type="RND_ID">
<identifier>TEMP_ID 342</identifier>
</dsql operation>
<dsql operation operation_ type="ON">
<location permanent="false" distribution="AllDistributions" />
<sql operations>
<sql_operation type="statement">CREATE TABLE [tempdb].[dbo].[TEMP_ID 342] ([Crimetype] VARCHAR(255) COL
</sql operations>
</dsql operation>
<dsql operation operation_ type="SHUFFLE_MOVE">
<operation_cost cost="8.808632269632" accumulative_ cost="0.808632269632" average_rowsize="26.344568" output
<source_statement>SELECT [T1_1].[Crimetype] AS [Crimetype],
[T1_1].[col] AS [col]
(SELECT COUNT BIG([T2_1].[Crimetype]) AS [col],
[T2_1].[Crimetype] AS [Crimetype]
FROM [ASDWDemoRALO1]. [dbo].[PoliceData] AS T2_1
GROUP BY [T2_1].[Crimetype]) AS T1_1</source_statement>
<destination_table>[TEMP_ID_ 342]</destination_table>
<shuffle columns>Crimetype;</shuffle columns>
</dsql operation>
<dsql operation operation_ type="RETURN">
<location distribution="AllDistributions™ />
<select>SELECT [T1_1].[Crimetype] AS [Crimetype],
[T1 1].[col] AS [col]
(SELECT CONVERT (INT, [T2_1].[col], 8) AS [col],

Foe e e ot T e e

Query Execution DMVs

Sessions

dm_pdw_exec_sessions

session_id (PK)

Queries

dm_pdw_exec_requests

request_id (PK)
session_id

Query Plan Steps

dm_pdw_request_steps
-

Query Plan Steps

dm_pdw_dms_workers

- request_id (PK)
AN step_index (PK)

SQL DB Queries

dm_pdw_sql_requests

N request_id (PK)
step_index (PK)

request_id (PK)
step_index (PK)

Investigating Performance

« Watching a plan progression

« Demo

Investigating Performance

» View plans on distributions

« Demo
» (only shows the estimated execution plan from the cache)

--Conn1

SELECT COUNT_BIG(*) FROM PoliceData AS A
CROSS JOIN PoliceData AS B

CROSS JOIN PoliceData AS C

OPTION (LABEL = 'myquerytest’)

--Conn2
SELECT

FROM sys.dm_pdw_dms_workers

WHERE request_id IN (

SELECT request_id

FROM sys.dm_pdw_exec_requests

WHERE status not in (‘Completed’,'Failed’,'Cancelled')
AND session_id <> session_id()

ANDJlabel] = 'myquerytest’)

AND STATUS != 'StepComplete’

AND distribution_id != -1

--Save plan as .sglplan and open in management studio
DBCC PDW_SHOWEXECUTIONPLAN (43,1231)

CONCAT('DBCC PDW_SHOWEXECUTIONPLAN (', distribution_id, ',', sql_spid, ')', CHAR(13), CHAR(10)) DBCCCommand

Investigating Performance

« Waiting tasks

« Demo

--Conn1
BEGIN TRAN

UPDATE A

SET Longitude = 10

FROM [PoliceDataLoadingDemo] AS A

WHERE CrimelD = '9017€91cc813aec96205962f13f1e0054ba05a82c61e0a74c6258f2377ec428f'
OPTION (LABEL = 'myquerytest’)

--Conn2

UPDATE A

SET Longitude = 12

FROM [PoliceDataLoadingDemo] AS A

WHERE CrimelD = '9017€91cc813aec9620596213f1e0054ba05a82c61e0a74c6258f2377ec428f'
OPTION (LABEL = 'myquerytest’)

--Conn3
SELECT waits.session_id,
waits.request_id,
requests.command,
requests.status,
requests.start_time,
waits.type,
waits.state,
waits.object_type,
waits.object_name
FROM sys.dm_pdw_waits waits
JOIN sys.dm_pdw_exec_requests requests
ON waits.request_id=requests.request_id
WHERE waits. request_id IN (SELECT request_id
FROM sys.dm_pdw_exec_requests
WHERE status not in ('Completed’,'Failed’,'Cancelled’)
AND session_id <> session_id()
ANDI[label] = 'myquerytest’)
ORDER BY waits.object_name, waits.object_type, waits.state;

Data Movement

Data Movement will not be invoked when

« Two distribution compatible tables are joined
« A table is joined to a replicated table
« Aggregation is distribution compatible

Data Movement does occur when

 Two distribution incompatible tables are joined

- Round robin tables are distribution incompatible with all tables, except replicated
tables

« Aggregation is distribution incompatible

Resultset resolves within distribution

Compute Node Control Node

\ Dist ributionN '

Prepares Resultset

\ Dis’rributionN >

PartitionMoveOperation

Distribution Compatible Join of Two Distributed Tables

SELECT a.color, b.Qty
FROM web_sales a

JOIN store_sales b ON ws_key = ss_key
WHERE a.color = 'Red'

Distributed by ws_key Distributed by ss_key

Distribution Compatible Join
| [Store Sales

= Join includes compatible distribution keys with
Result Set -
compatible data types
Red,5

Streaming results

T 9q 1sid

m Results streamed to client

" No aggregation (processing) on control node
Result Set
Red,3

¢ da 1sid

Final Result Set
Red,5 : Red,3

Distribution Compatible Join with Replicated Table

SELECT ss_key, Cost
FROM item dim a

JOIN store_sales b ON a.color = b.color

WHERE a.color = 'Yellow'
Replicated Table Distributed by ss_key
_ Distribution Compatible Join
[_ttem Dim [OTEI=IE - - - —
- 2 Result Set: = Replication satisfies compatibility for
{—s IS s s inner joins
« - . = Store Sales distribution key not used
oo - Streaming results |
) oo 2 Result Set: " Results streamed to client
) . :
N 6,5 = No aggregation (processing) on control
N

node required

Resultset requires data from different nodes

Compute Node Control Node

% \ Dis’rributionN >

Prepares Resultset

\ Dis’rributionN >

Distribution Incompatible Join with Round Robin Table

SELECT vs_key, a.ord ,b.qgty

FROM vendor_sales a
JOIN store_sales b ON a.vs_key = b.VID
WHERE a.color = 'Red'

Distribution Incompatible

= Distribution used from left table
(vendor_sales) only

Distributed by vs_key Round Robin

el > ShuffleMoveOperation

11,15,5

T 4d 1sid

= Data from right table (Store_Sales) is
rebuilt with column 'VID" as DK

= Query is now distribution compatible

Result Set

Streaming results
= Results streamed to client

¢ 49d 1sid

= No aggregation (processing) on control node

Final Result Set
11,15,5: 2,13,3

Distribution Incompatible Aggregation

SELECT a.color, SUM(a.cost), SUM(b.gty)
FROM item dim a

JOIN store_sales b ON a.color = b.color

GROUP BY o cotor Distribution Compatible Join

= Replication satisfies compatibility for inner joins

Replieaied TebIE Pistributed Table = Store Sales distribution key not used

el Aggregation: incompatible

Red,20,8
Blue,50,21

Green

Blue

= Operation ShuffleMove

Yellow

" Final results cannot be completed on the compute

nodes alone
= Right table (Store Sales) is rebuilt with distribution
Green X N TR key="Color’ first, then partial aggregation on
— ’ Green, 15,1 compute nodes

Streaming results

Final Result Set : :
Red,20,8 : Blue,50,21 : Yellow,15,30 : Green,15,1 . NO aggregann (processmg) on COI’T[I’O| node

= Results streamed to client

Recommendations

» Round robin only for small tables and hash for large
tables
» Try to align fact and dimension data across distributions

« Round robin tables always require data movement in the
system

 Hash tables run in parallel

Data Movement Service

« Data movement round robin vs hash
e Demo

Example: Most Optimal plan

< ?xml version="1.8" encoding="utf-8"?>
<dsql_query number nodes="4" number_distributions="60" numher_ distributions_per_node="15">

. <sgl»select

from

lgrc.orders,

lgrc.lineitem — Query
. . . where
Distribution

compatiblejoin and o_orderdate BETWEEN '1997-81-81' AND '1997-12-31'

order by
o_orderdate, 1 shipdate</sqgl> —

<dsgl operations total cost="8" total number operations

<dsql operation operation_ type="RETURN">
<location distribution="AllDi®sgributions" />
kzelect}...<fzelectﬂ

</dsgl operation>

</dsql operations>

Just a return operation
“pass-through”

Search for dsql_operation

</dsql query> :
operation_type

Optimal Plans tend to have fewer steps

<dsql operations total cost="3376410.23822858" total number_operationsg'9"> 9 steps

<dsql_operation operation_type="RND IN'>...</dsql_operation>
<dsgl operation operation type="ON">...3Meqgl operation>
f="SHUFFLE_MOY

. Important steps
83610284
(creates a o 2 shuffles
Create/drop mrjargg(e)rnjco * Treturn
table Overhead steps
name temp
(Always a tables etc) e Rnd_Id

* Creates/Drops

<operation cost cost="100477.402125744" accumulative cost="3376410.23822858"
<source_statement>...</source_statement>
<destination table>[TEMP_ID 288]</destination table>
<shuffle columns>o_orderkey;</shuffle columns>
</dsqgl operation>
<dsql _operation operfation_ type="RETURN">

<location distribution="Al1lDistributions" />

<select>...</select> both underlying tables

</dsql_operation> are round robin
<dsql_operation opemgation_type="ON">...</dsql_operation>

<dsql_operation opewation_type="ON">...</dsql_operation>
</dsql_operations>

Same query as last
example except now

Data Movement Types for a Query

ShuffleMoveOperation
PartitionMoveOperation
BroadcastMoveOperation

TrimMoveOperation

MoveOperation

RoundRobinMoveOperation

Distribution & Hash algorithm = New distribution
Changing the distribution column in preparation for join.

Distribution = Control Node
Aggregations - count(*) is count on nodes, sum of count

Distribution = Copy to all distributions
Changes distributed table to replicated table for join.

Replicated table - Hash algorithm - Distribution
When a replicated table needs to become distributed.
Needed for outer joins.

Control Node = Copy to all distributions
Data moved from Control Node back to Compute Nodes
resulting in a replicated table for further processing.

Source = Round robin algorithm = Distribution
Redistributes data to Round Robin Table.

Data Movement Types Demo

Da

Shuff

a Movement

e Move

The Shuffle Move is a very common
operation and is used to redistribute data
between compute nodes into a HASH
distributed table, in most cases.

= Often

to further aggregate it or to perform a join between tables.

the MPP DWH Engine will need to redistribute data

= The Shuffle Move will create a new HASH distributed table
that is hashed on a different column to the original table.

» The column to distribute on for the new table will be
determined by the MPP DWH engine based on the query.

= Consider the following query, where the table is distributed
on "OrderDateKey” but the query aggregated on
"ProductKey”:

= SELECT COUNT(*) FROM FactinternetSales
GROUP BY ProductKey

ReturnOp
Control Note: A PartitionMove for
aggregation does NOT
N Od c occur to the control node
A B C D
Compute
node 1 E - G H
A B C D
Compute
node 2 E - G H

Data Movement: Shuffle

SELECT vs_key, a.ord ,b.qgty
FROM vendor_sales a

JOIN store sales b ON a.vs_key = b.VID Data move type. redIStrIbUthn

WHERE a.color = 'Red'

» TJables are not co-located on their

Distributed Table Distributed Table : - i
respective distribution keys

Distribution: incompatible

. = Distribution used from left table
esult Set
11,15, 5 (vendor_sales) only

ShuffleMove cheaper than BroadcastMove

=>»ShuffleMoveOperation
Siee i S = Data from right table (Store_Sales) is
215,55 rebuilt with column ‘VID' as DK

= Query is now distribution compatible

Streaming results

Final Result Set .

= No aggregation (processing) on control node

Data Movement

BroadcastMove

Scenario 1: The BroadcastMove may be
used to move a few records or a few
columns from a HASH distributed table

for any further processing...

= Typically the Broadcast Move occurs
during query execution when the MPP
Optimizer determines it is more efficient
then any other DMS operation.

= |t may also occur during the load phase
it the process is designed to derive
replicated tables from a distributed
table.

The Broadcast Move does not
involve any movement of data
between compute and control

@elplige] o
glelefs

A B C D
Compute E\ F\ G\ H\
nOde /I Re:)Iicate ' ' '

t t t

A 87 C/ D
Compute E - G H
node 2

Replicate

Data Movement

BroadcastMove

Scenario 2: The BroadcastMove is used
to move records from a HASH
distributed table to create a replicated

table. (APS only)

= Typically in this case, the MPP DWH
optimizer always decides to use a
BroadcastMove.

The Broadcast Move in this
case does not involve any
movement of data between

C O ﬂtrO | compute and control nodes.
node

A B C D
Compute E\ F\ G\ H\
nOde 1 Re:)Iicate ' ' '

1 L a—

A 87 C D
Computer E F G H
node 2

Replicate

Data Movement: Broadcast

- - SELECT vs_key, a.ord ,b.gty
Risptibated Table Distributed Table FROM vendor sales a

| Store Sales '

JOIN store_sales b ON a.vs_key = b.VID
WHERE a.color = 'Red’

ss_key | VID
Operation type: broadcast

Result Set = Tables are not co-located on their respective
2,13, 3 distribution keys

= (Cost for broadcast is lower
Distribution: incompatible
BroadcastMove cheaper than ShuffleMove
=»Broadcast operation

= Distributed Vendor Sales table is getting replicated
= \WHERE predicates pushed down

= Query is now distribution compatible
= Distributed to replicated

Result Set

11,15, 5

Streaming results

m Results streamed to client
Final Result Set . N . . | d
2173:11.155 O aggregation (processing) on control node

Data Movement

PartitionMove

The Partition Move is used to move records
from each compute node up to the
control node.

= Consider the following query as an example:
= SELECT COUNT(*) FROM DistributedTable

= The MPP DWH Engine will rewrite this to send a specific
query to each distribution.

» Each distribution will then return the count of rows in that
distribution as a single value.

= The SUM of each distribution row count will represent the
total row count of the distributed table.

= The MPP DWH Engine needs to perform this SUM
operation in a single location, so a Partition Move is used
to store the intermediate results on the control node
database for final aggregation.

SUM
Control g
glelels
COUNT

A C D
Compute
node 1 E H

A C D
Compute
node 2 E G H

Partition Move

RN st i n | (BeosE) ST AR Join Type: shared nothing
WHBRE o cotoe = veltew Distribution: compatible
o e e o = Replication satisfies compatibility for inner
joins
e S = Store Sales distribution key not used

[__temoim | i Siresaes | . -
; 5 =i e Aggregation: incompatible
i Red i i i Yellow,5,12
o= - e | W °

! Blue i i '_-_'— i

! Yellow

PartitionMove cheaper than ShuffleMove

=» PartitionMove to control node

= Partial aggregations performed on
compute nodes and partition-moved to

Result Set

Yellow,5,18 control node

: Streaming results

. = Results: finally aggregated on the control
- :
Yellow,5,30 Final Aggregation noae

= Results streamed to client

Data Movement

TrimMove

Scenario 1: The TrimMove is used to
create a HASH distributed table from a

ROUND ROBIN distributed table, in
some cases.

Consider the location of the source and target
rows for this movement type.

= The Trim Move processes with hash all
values in the source table column that has
been defined as the target table HASH
column.

Control
node

JA\
Compute’ E
nOde /I Replicate

A B
Compute E

node 2

Replicate

Data Movement

RoundRobinMove

The RoundRobinMove is used to move
records from distributed table into a
created ROUND ROBIN distributed
table, in most cases.

Consider the location of the source and target
rows for this movement type.

= The RoundRobinMove processes uses a
round robin algorithm to distribute data. No
HASH function will be used against any
table column.

The RoundRobinMove
does not involve any

@e)alige] movement of data
between compute and

glelels control nodes.

Compute

node

Compute

node 2

Questions to ask when looking at DSQL plan

- What is taking the longest?
« What is this step doing?
« Does it make sense? This takes some time to learn.

« What objects are being used by the query?
 Tables

« Statistics?

« Distribution? Hash or Round Robin?

« How many rows? Skew? DBCC PDW_SHOWSPACEUSED
- External Tables

« No push down, consider loading
- Views

« What's under the view?

« Overloaded with joins?

Key best practices

 Create and update statistics

« Statistics must be manually created and maintained.
» Create statistics on all columns in join, group by and where
« Add multi-column statistics where join on multiple columns or predicates

« Hash distribute large tables

« Selecting the right distribution columns will minimize data movement

» Use resources classes thoughtfully

 Balance need for memory with need for concurrency
 Not all queries benefit

» Load large external tables rather than query
« All data is brought back, no push down

Performance Investigation Guide

Look at the system

- A lot of users/high concurrency?

« Are resource classes being correctly used

 Are queries faster with a single user?

« Loading happening at the same time as queries?

Look at query plans

 Find longest running steps
* |Is the DMS being invoked

Maintenance {}
« Use Azure Automation to run jobs ¢

Use a large or extra large role for maintenance

Jse partitions
« But not too many

 Rebuild Indexes
« Think about loading strategy

« Create statistics
 Rebuild statistics
* [T you are pausing do not pause and resume every hour

Major factors that cause performance issues

o Statistics
« Data Skew
 Clustered Columnstore Index Maintenance (lack of)

» Poor design choices

« Distributed vs. Replicated vs. Round Robin tables
« CCl vs. RowStore vs Heap
« Query Design

« Avoid functions that may cause the system to evaluate the
data row by row

=" Microsoft

