
SQL Server Storage:
The Terabyte Level

Brent Ozar, Microsoft Certified Master, MVP
Consultant & Trainer, SQLskills.com

BrentOzar.com/go/san

• 333 miles
• 375 boats

invited
• 33 DNFs

Race Facts

Typical Terabyte Troubles

• Restores
• Backups
• DBCCs
• Querying

• Bad Ideas for:
•  Schema
•  Indexes (CL/NCL)
•  Partitioning
•  Storage

1.  The whole server
2.  One whole database
3.  One whole table
4.  A few records
5.  A schema change (like an SP or view)

What Do We Restore Most Often?

The 1TB DBA’s Worst Enemy

Picture Source http://www.flickr.com/photos/slworking/2825225419/

Photo: http://www.flickr.com/photos/litherland/2118607755/

Oops is a four letter word.

• Snapshot: instant backup
• Near-zero time of database size
• Near-zero space required
• Very easy to restore the whole thing
• Somewhat easy to restore objects

The “Before You Touch That” Backup

• SQL 2005 & newer
• Enterprise Edition
• Looks like a DB
• Great for ad-hoc

safety plans

Database Snapshots: CONTROL-Z

Photo: http://www.flickr.com/photos/croma/557971148/

•  Ad-hoc backups before app upgrades
•  Let users query DB during ETL loads
•  Presto, locking problems disappear
•  Automated switching is messy
•  Snapshots stop some operations
• Watch that disk space
•  Still live on this database server

Database Snapshot Pros & Cons

SAN Snapshot Backups

• Not related to SQL Server at all
• Does require SQL Server awareness
•  Involves doing a SQL Server backup
• Back up any size database in seconds
• Restore any whole database to any

server in seconds*

SAN Snapshots

• May be groups of databases
• May involve attaching more drives
• May require the SAN admin’s help
• May not involve the transaction log

* Well, Not Really.

• Backup speed nearly instantaneous
• Tape work offloaded to SAN controller
• Can keep many backups online
• Easy to run DBCCs on live backups
• Refresh dev/QA servers instantly

SAN Snapshot Benefits

• Can be very expensive
• Presenting snapshots to dev/QA

servers can slow down production
• Doesn’t help log shipping

SAN Snapshot Drawbacks

• SQL Server Database Snapshots:
•  Before “oops” moments

• SAN Snapshots:
•  Refresh QA, dev
•  Run DBCC there
•  Test version upgrades, new versions

Our Sample Database

Config Tables
Current Data
Archive Data
Calculated Data

• Restore PRIMARY filegroup first
• Database is instantly online
• Restore other filegroups individually
• Tables come online with each FG
• Demo: BrentOzar.com/go/piecemeal

Online Piecemeal Restore

Our Sample Database

Config Tables
Current Data
Archive Data
Calculated Data

• Keep PRIMARY filegroup very small
• Stop new PRIMARY objects (incl. indexes)

using DDL triggers
• Design filegroups for recovery needs
• Keep related schema, objects together

(including indexes)

Designing for Restores

•  Instant File Initialization
• SQL Server 2005+, all editions
•  Instantly grows/creates data files
• Doesn’t work with log files
• All gain, no pain

The Easy Button for Restores

Typical Terabyte Troubles

• Restores
• Backups
• DBCCs
• Querying

• Bad Ideas for:
•  Schema
•  Indexes (CL/NCL)
•  Partitioning
•  Storage

• Separate frozen data
• Enable compression
• Set 100% fill factor
• Update statistics
• Set FG to read-only
• Redesign backups

Read-Only Filegroups

Picture Source http://www.flickr.com/photos/guilleavalos/2139208615/

• Full Backup
• Transaction logs every X minutes
• Filegroup differentials for active FGs

Read-Only Backup Strategy

• Restore PRIMARY FG from full
• Restore read-only FGs from full
• Restore active FGs from:
•  Old full
•  Most recent diff
•  Transaction logs

Restore Strategy

• Not supported in GUI
• Barely supported in

third party tools
• Totally inconvenient

Who Does This?

• Compress the backups
• Compress the data
• Archive data out

Better Option: Back Up Less*

• Only one setting
• Compresses

everything,
every time

Native Backup
Compression

Picture Source http://www.flickr.com/photos/20052121@N00/2247588193/

• 2005+ Enterprise Edition only
• Compress it once and you’re done
• Often saves >50%
• Faster SELECT queries
• Bad for write-biased OLTP

Compress the Data

• No inheritance
• No built-in alerting
• Must revisit frequently

Compression Gotchas

Archive Data Out of the DB

It may not be your job
to build an archiving strategy,
but it is your job to sell one.

Typical Terabyte Troubles

• Restores
• Backups
• DBCCs
• Querying

• Bad Ideas for:
•  Schema
•  Indexes (CL/NCL)
•  Partitioning
•  Storage

Why do DBCCs?
Picture Source http://www.flickr.com/photos/taniwha/62716776/

• Tuesday 1AM: Full backup
• Every 15 minutes: t-log backup
• Tuesday 11AM:

User reports corruption
• What do we restore?

The Corruption Timeline

•  It’s not logged when it happens
• Error 825 – Informational only
• No idea which backups to restore
• Page may have changed at any time
• Bigger databases = more to corrupt

Sad Facts About Corruption

• Time-intensive
• Resource-intensive
• No progress indicator

Sad Facts About DBCC

• SAN snapshots
• 1st thing after refreshing dev/QA
• Break DBCC into small chunks:

BrentOzar.com/go/vldbdbcc

EZ DBCCs on VLDBs

Typical Terabyte Troubles

• Restores
• Backups
• DBCCs
• Querying

• Bad Ideas for:
•  Schema
•  Indexes (CL/NCL)
•  Partitioning
•  Storage

1.  When 1% of the data changes
2.  When 10% of the data changes
3.  When 20% of the data changes
4.  When 50% of the data changes
5.  It depends

When Do Statistics Update?

1.  When 1% of the data changes
2.  When 10% of the data changes
3.   When 20% of the data changes
4.  When 50% of the data changes
5.  It depends

When Do Statistics Update?

1.  By sampling 1% of the data
2.  By sampling 10% of the data
3.  By sampling 20% of the data
4.  By scanning of the data
5.  It depends

How Do Statistics Update?

1.  By sampling 1% of the data
2.  By sampling 10% of the data
3.  By sampling 20% of the data
4.  By scanning of the data
5.   It depends

How Do Statistics Update?

• When an index is rebuilt:
statistics updated with full scan
• When you update statistics:

uses specified sampling rate
(or whatever SQL decides)

How Statistics Update

• Set a weekly maintenance window
(not outage, just slowdown)
•  Integrate stats update with ETL
• Track which indexes you rebuild
• Only touch stats that weren’t touched

Updating Stats In a Perfect World

SQLfool.com

Typical Terabyte Troubles

• Restores
• Backups
• DBCCs
• Querying

• Bad Ideas for:
•  Schema
•  Indexes (CL/NCL)
•  Partitioning
•  Storage

“Let’s separate
data and indexes
into filegroups!

Eureka!

Picture Source http://www.flickr.com/photos/20052121@N00/2247588193/

•  Identify and control IO paths
• Control parallelism
• Back up & restore units of data
• Use SAN snapshots
• Set one filegroup to read-only

You-Reek-A - May Not Be Able To:

“Let’s partition the
data and SQL
Server queries
will be faster!

Eureka!

• Partition elimination rarely works
• Have to know your queries intimately
• Bottom line: great for management,

archiving, sliding loads –
but not faster queries

You-Reek-A – It Doesn’t Work

“We’re low on
space - let’s add
a big empty file
instead of
growing these.”

Eureka!

File 1 –
95% used

File 2 –
95% used

File 3 –
95% used

Picture Source http://www.flickr.com/photos/lifeisaprayer/2282011834/

Guess where the
inserts go?

Eureka!
File 1 – 95%

used

File 2 – 95%
used

File 3 – 95%
used

File 4 – 0%
used

Picture Source http://www.flickr.com/photos/lifeisaprayer/2282011834/

• Start with 4 files per filegroup
• Put all on different IO paths (maybe)
• Add new filegroups, move objects to it
• Rebuild all indexes after adding files
• Extremely important for 1GB iSCSI

The Better Way

Typical Terabyte Troubles

• Restores
• Backups
• DBCCs
• Querying

• Bad Ideas for:
•  Schema
•  Indexes (CL/NCL)
•  Partitioning
•  Storage

BrentOzar.com/go/san

