SQL Server Storage:
The Terabyte Level

Brent Ozar, Microsoft Certified Master, MVP
Consultant & Trainer, SQLskills.com

25

SQL==
CRUISE

BrentOzar.com/go/san

Home AboutMe Books Consulting SQLMCM SQL Server Articles SQL Server Training Videos

You Are Here: Home » SQL Server Articles » SAN Storage Best Practices for SQL Server

SAN Storage Best Practices for SQL Server

Using SQL Server on SAN storage doesn't always guarantee fast performance. Before the SQL Server
installation starts, you need to get the SAN configuration right. Here’s my posts on how to get things started
right.

How to Configure Your SAN Storage for SQL Server

Database administrators usually see the SAN as a black box. We ask the SAN administrators for a few arrays,
and they just ask us what size we need. Configuring storage for SQL Server is more complex than other
applications, but thankfully we've got a lot of help. Your SAN vendor has already put a lot of work into
documenting how to set up arrays on your SAN controller specifically for SQL Server. Here's the most common
vendor document repositories:

Brent Ozar

SQLMCM, MVP, ETC...

Twitter Upcoming Events

Search

LIKE MY STUFF?
SUBSCRIBE.

Subscribe via Email

Subscribe via RSS

@BrentO on Twitter - Facebook - LinkedIn

UPCOMING EVENTS

Race Facts

——

» 333 miles
» 375 boats

invited
*» 33 DNFs

Typical Terabyte Troubles

\

* Restores * Bad ldeas for:

* Backups * Schema

- DBCCs . Inde.x-es (.CL/NCL)
_ * Partitioning

" Querying * Storage

SQL &

CRUISE

What Do We Restore Most Often?
\

The whole server

One whole database
One whole table

A few records
A schema change (like an SP or view)

ok whpE

SQL &

CRUISE

"

Picture Source httpi// PAOTO slworking/2825_2,25ﬁ:l.g,b

is a four letter word.

- A
f
‘//./" e e .
‘/'., v .0.
F 4 7, B
(/’
.' ’

{ VB . - -
Rl z <
\A ~ &
. -

.\ 4 ~ .
Y
\ . &4
l"
1 '

The “Before You Touch That” Backup
——

* Snapshot: instant backup

* Near-zero time of database size
* Near-zero space required

* Very easy to restore the whole thing
* Somewhat easy to restore objects

=
SQLZ=

CRUISE

Database Snapshots: CONTROL-Z

* SQL 2005 & newer
* Enterprise Edition
* Looks like a DB

* Great for ad-hoc
safety plans

F—
sQL 2=

Photo: http://www.flickr.com/photos/croma/557971148/

Database Snhapshot Pros & Cons

—

* Ad-hoc backups before app upgrades
* Let users query DB during ETL loads
* Presto, locking problems disappear

* Automated switching is messy

* Shapshots stop some operations

* Watch that disk space

« Still live on this database server

=
SQLZ=

CRUISE

)]

\))

o4

CRUISE

SAN Snapshots
R

* Not related to SQL Server at all

* Does require SQL Server awareness

* Involves doing a SQL Server backup

* Back up any size database in seconds

* Restore any whole database to any
server in seconds®*

=
SQLZ=

CRUISE

* Well, Not Really.
R

May be groups of databases

May involve attaching more drives
May require the SAN admin’s help

May not involve the transaction log

—=
)

SQLZ=

CRUISE

SAN Snapshot Benefits
—

* Backup speed nearly instantaneous

* Tape work offloaded to SAN controller
* Can keep many backups online

» Easy to run DBCCs on live backups

* Refresh dev/QA servers instantly

=
SQLZ=

CRUISE

SAN Snapshot Drawbacks
e

* Can be very expensive

* Presenting snapshots to dev/QA
servers can slow down production

* Doesn’t help log shipping

SQL &

CRUISE

—

* SQL Server Database Snhapshots:

* Before “oops” moments

* SAN Snapshots:
* Refresh QA, dev
* Run DBCC there
* Test version upgrades, new versions

=
SQLZ=

CRUISE

Our Sample Database

e

& Config Tables
& Current Data
= Archive Data
Calculated Data

Online Piecemeal Restore

\
* Restore PRIMARY filegroup first
* Database is instantly online

* Restore other filegroups individually

* Tables come online with each FG
* Demo: BrentOzar.com/go/piecemeal

2
SQLZ=

CRUISE

Our Sample Database

e

& Config Tables
& Current Data
= Archive Data
Calculated Data

Designing for Restores

—

» Keep PRIMARY filegroup very small

» Stop new PRIMARY objects (incl. indexes)
using DDL triggers

* Design filegroups for recovery needs

* Keep related schema, objects together
(including indexes)

2
SQLZ=

CRUISE

The Easy Button for Restores

\
* Instant File Initialization

* SQL Server 2005+, all editions
* Instantly grows/creates data files
* Doesn’t work with log files

* All gain, no pain

=
SQLZ=

CRUISE

Kimberly L. Tripp | Instant Initialization - What, Why and How?

IR Rt T<;::"’“ http: //www.sglskills.com/blogs/kimberly/post/Instant-Initialization-What-Why-and-How.aspx

53 ¢ | (Qr Google

B

Kimberly L. Tripp

Imnrovinag myv SO clrille #+hvAay
improving m IS .UNLO

home |

J =Lk OUNIR

syndication | login

On this Page

A

categories

S R I T I I I I IR DR D TR IR DR I R L R R I

64bit Computing

Are you kidding me?
Backup & Restore
Conference Resources/Q&A
Conferences
Consolidation

Database Maintenance
Design

Events

FILLFACTOR

Filtered Indexes

Forelgn Keys

Green Computing

HOLs DVD

Indexes

Inside the storage engine
Instant Initialization
Manageabllity
Nonclustered Indexes
Opinions

Optimizing Procedural Code
Partitioning

Personal

Presenting

Mnneactin

<< SP2 was released today... and, did you know about the Feature Pack? | Moving databases around - what are your
options and across what versions? >>

Instant Initialization - What, Why and How?

Instant Initialization is a new feature of SQL Server 2005 that is based on an NTFS feature that was added to Windows XP
(and therefore is also available in Windows 2003 Server). It's a feature that's seemingly simple; it allows file allocation
requests to skip zero initialization on creation. As a result, file allocation requests can occur instantly - no matter what the file
size. You might wonder why this is interesting or why this make a difference? Most file allocation requests are small requests,
with small incremental changes (like .doc files, .xIs files, etc.) but database files can be rather large. In fact, they should be
rather large as pre-allocation of a reasonable file size is a best practice to reduce file fragmentation. Additionally, autogrowth
causes performance delays (more so in 2000 than 2005) but it's generally something that you want to avoid when possible.
As as result, database creation times can take minutes to hours to days, depending on file allocation request. But - it's not
just for database creation. ALL file requests can leverage this feature: file creation for a new database, adding a file to an
existing database, manually or automatically growing a file and (IMO - the best) restoring a database where the file (or files)
being restored does not already exist. The reason I think the last feature is the best is that it can reduce downtime if a
database is damaged and allow you to get back up and running more quickly. This is especially important for databases that
cannot leverage partial database availability, which is an Enterprise Engine feature. So, to give you some motivation, here is
a test that I performed just to have some interesting and comparable numbers.

Performance Test with Zero Initialization

Hardware: Dell Precision 670 Dual Proc (x64) with Dual Core, 4 GB Memory, RAID 1+0 array w/4-142 GB, 15000rpm disks
CREATE DATABASE with 20 GB Data file = 14:02 minutes
ALTER DATABASE BY 10 GB = 7:01 minutes
RESTORE 30 GB DATABASE (EMPTY Backup) = 21:07 minutes

Typical Terabyte Troubles

\

* Restores * Bad Ideas for:

* Backups * Schema

- DBCCs . Inde.x-es (.CL/NCL)
_ * Partitioning

- Querying * Storage

SQL &

CRUISE

Read-Only Filegroups

» Separate frozen data
* Enable compression
* Set 100% fill factor

* Update statistics

* Set FG to read-only

. I;§design backups

SQLZ=

CRUISE

Picture Source http://www.flickr.com/photos/guilleavalos/2139208615/

Read-Only Backup Strategy

\
* Full Backup

* Transaction logs every X minutes

* Filegroup differentials for active FGs

SQL &

CRUISE

Restore Strategy

\
* Restore PRIMARY FG from full
* Restore read-only FGs from full

* Restore active FGs from:
* Old full
* Most recent diff
* Transaction logs

SQL &

CRUISE

* Not supported in GU| S

» Barely supported in
third party tools

* Totally inconvenient

)

o4
CRUISE

Better Option: Back Up Less*
—

* Compress the backups

* Compress the data
* Archive data out

=
SQLZ=

CRUISE

Only one settin

Compresses
everything,
every time

c@m/photos/20052121@N00/2247588193/

Compress the Data

\
» 2005+ Enterprise Edition only
» Compress it once and you're done
* Often saves >50%

* Faster SELECT queries

* Bad for write-biased OLTP

2
SQLZ=

CRUISE

Compression Gotchas

"
* No Inheritance

* No built-in alerting
* Must revisit frequently

=
SQLZ=

CRUISE

Archive Data Out of the DB
\

It may not be your job
to build an archiving strategy,
but it is your job to sell one.

F—
sQL 2=

CRUISE

Typical Terabyte Troubles

\

* Restores » Bad Ideas for:

* Backups * Schema

» DBCCs . Inde.x-es (.CL/NCL)
_ * Partitioning

- Querying * Storage

SQL &

CRUISE

-Why do DBCCs? -

" Picture Source http://www.flickr.coni/photos/taniwha/62716776/* *

e

The Corruption Timeline

\
* Tuesday 1AM: Full backup
* Every 15 minutes: t-log backup

* Tuesday 11AM:
User reports corruption

* What do we restore?

SQL &

CRUISE

Sad Facts About Corruption
—

* It’'s not logged when it happens

* Error 825 - Informational only

* No idea which backups to restore

* Page may have changed at any time
* Bigger databases = more to corrupt

=
SQLZ=

CRUISE

Sad Facts About DBCC
"

* Time-intensive

* Resource-intensive
* No progress indicator

=
SQLZ=

CRUISE

EZ DBCCs on VLDBs

\
* SAN snhapshots
* 18t thing after refreshing dev/QA

* Break DBCC into small chunks:
BrentOzar.com/go/vildbdbcc

SQL &

CRUISE

Typical Terabyte Troubles

\

* Restores * Bad Ideas for:

* Backups * Schema

- DBCCs . Inde.x-es (.CL/NCL)
] * Partitioning

" Queryi ng * Storage

SQL &

CRUISE

> w e

D.

—=
)

When Do Statistics Update?

“§--""=:.>
When 1% of the data changes

When 10% of the data changes
When 20% of the data changes
When 50% of the data changes

It depends

SQLZ=

CRUISE

When Do Statistics Update?

ﬁ_______.qi.k
1. When 1% of the data changes

2. When 10% of the data changes
3. When 20% of the data changes
4. When 50% of the data changes

5. It depends

=
SQLZ=

CRUISE

> w e

sQL 22 f-o
CRUISE

How Do Statistics Update?

\
By sampling 1% of the data
By sampling 10% of the data
By sampling 20% of the data
By scanning of the data

It depends

SQL==

> w e

FO

How Do Statistics Update?

‘,_______.qi.>
By sampling 1% of the data
By sampling 10% of the data
By sampling 20% of the data
By scanning of the data

. It depends

CRUISE

How Statistics Update
R

* When an index is rebuilt:
statistics updated with full scan

* When you update statistics:
uses specified sampling rate
(or whatever SQL decides)

SQLZ=

CRUISE

Updating Stats In a Perfect World
—

* Set a weekly maintenance window
(not outage, just slowdown)

* Integrate stats update with ETL
* Track which indexes you rebuild
* Only touch stats that weren’t touched

=
SQLZ=

CRUISE

SQL FOOL

ADVENTURES IN SQL TUNING - A BLOG FOR THE REST OF US

HOME ABOUT THE AUTHOR SQL SPEAK SUMMIT RESOURCES

Index Defrag Script, v4.0

In my blog post, "Index Defrag Script Updates - Beta Testers Needed", I stated "I'll hopefully have the new version online
in just a few days." That was dated January 26th. I had every intention of following through with it, too, but something
came up:

Typical Terabyte Troubles

\

* Restores * Bad Ideas for:

* Backups * Schema

- DBCCs . Inde.x-es (.CL/NCL)
_ * Partitioning

" Querying * Storage

SQL &

CRUISE

"
“Let’s separate

data and indexes
into filegroups!

=
SQLZ=

CRUISE

Picture Source http://www.flickr.com/photos/20052121@N00/2247588193/

My personal preference for configuring initial filegroups for any system is:
PRIMARY (This can't be changed) on minimal I/O path (not much I/O needed)
DATA on a separate I/O path; DATA gets the DEFAULT filegroup property
INDEX on a separate I/0O path

On PRIMARY I place no additional files other than the .MDF file (which has to be in the PRIMARY filegroup), and no additional data
goes into the .MDF file. It stays very small and isn't used for user data.

On DATA I place all of my clustered indexes or (if I have any) heaps. Since this is also the Default filegroup, if I accidentally forget the
"ON [DATA]" clause at the end of my object creation statements, they'll go here instead of the PRIMARY filegroup (the reason for that
is for a later post).

On the INDEX filegroup I place all of my non-clustered indexes.

This of course assumes that DATA and INDEX are both stored on separate I/O paths. As long as they are, I/O resources spent
retrieving data from tables won't interfere with I/O searching through indexes. I/O resources spent performing updates, inserts and
deletes will be split between the tables and the indexes. Will you see double the performance? Of course not. But you should see a
measurable and visible increase in performance vs storing everything on the PRIMARY filegroup.

® For heavily accessed tables, place these tables in one filegroup and place
the table's indexes in a different filegroup on different physical disk arrays.
This will improve performance, because separate threads will be created to access
the tables and indexes.

For VLDB, tables and their related indexes should be separated onto separate files and physical
disks for optimum performance running queries, but not separate filegroups. If they are in separate
filegroups, then you cannot back up and restore them as a single unit. [7.0, 2000, 2005] Updated
10-02-2006

You-Reek-A - May Not Be Able To:

\
* |[dentify and control |O paths

» Control parallelism

* Back up & restore units of data
* Use SAN snapshots

» Set one filegroup to read-only

=
SQLZ=

CRUISE

"
“Let’s partition the
data and SQL

Server queries
will be faster!

=
SQLZ=

CRUISE

You-Reek-A - It Doesn’t Work

——

* Partition elimination rarely works

* Have to know your queries inti

* Bottom line: great for manage
archiving, sliding loads -
but not faster queries

SQLZ=

CRUISE

mately

ment,

Eureka!

| —

File 1 -
95% used

“We’re IOW On
space - let's add

. A File2 -
a big empty file o) 95% used
instead of
growing these.” —
SRS

Source http:;//www.flickr.com/photos/ lifeisaprayer/2282011834/

Eureka!

File 1 - 95%
used

G.uess where the P e 0%
Inserts gO’P used

8 File3-95%
used

File 4 - 0%
used

g
SQL==
CRUISE

Picture Source http://www.flickr.com/photos/lifeisaprayer/2282011834/

The Better Way

.
» Start with 4 files per filegroup

* Put all on different 10 paths (maybe)

* Add new filegroups, move objects to it
* Rebuild all indexes after adding files

* Extremely important for 1GB iSCSI

2
SQLZ=

CRUISE

Typical Terabyte Troubles

\

* Restores » Bad Ideas for:

* Backups * Schema

- DBCCs . Inde.x-es (.CL/NCL)
_ * Partitioning

- Querying * Storage

SQL &

CRUISE

BrentOzar.com/go/san

Home AboutMe Books Consulting SQLMCM SQL Server Articles SQL Server Training Videos

You Are Here: Home » SQL Server Articles » SAN Storage Best Practices for SQL Server

SAN Storage Best Practices for SQL Server

Using SQL Server on SAN storage doesn't always guarantee fast performance. Before the SQL Server
installation starts, you need to get the SAN configuration right. Here’s my posts on how to get things started
right.

How to Configure Your SAN Storage for SQL Server

Database administrators usually see the SAN as a black box. We ask the SAN administrators for a few arrays,
and they just ask us what size we need. Configuring storage for SQL Server is more complex than other
applications, but thankfully we've got a lot of help. Your SAN vendor has already put a lot of work into
documenting how to set up arrays on your SAN controller specifically for SQL Server. Here's the most common
vendor document repositories:

Brent Ozar

SQLMCM, MVP, ETC...

Twitter Upcoming Events

Search

LIKE MY STUFF?
SUBSCRIBE.

Subscribe via Email

Subscribe via RSS

@BrentO on Twitter - Facebook - LinkedIn

UPCOMING EVENTS

Béth:-Leonard, circumnéﬁigator' e /

