
Common Database 
Deployment Gotchas



Simon D’Morias
SQL Server Consultant @ Sabin.io

Microsoft Certified Master: SQL Server

MCSE: Data Platform & Business Intelligence

simon.dmorias@sabin.io

mailto:simon.dmorias@sabin.io


Why database deployments are complicated?

• There is usually just one database

• Active Connections

• Database State

• Release rollbacks are often impossible



Gold Schema vs Migration Scripts

• Point in time representation of our database

• Migration take you from A to Z via B, C, D…

• Gold Schema goes direct from A to Z



Migration Scripts

Feature C

Script 1 Script 2 Script 3 Script 4

Feature B

Script 1 Script 2 Script 3

Feature A

Script 1 Script 2



Pros and Cons of Migration Scripts

PROS:

• Simple to manage (to start 
with)

• Schema and Data same 
process

CONS:

• No proper Source Control

• Transactional deployment 
not possible



Common Deployment Problems



Code vs Provisioning/Operational Changes

• Environments are provisioned to a specification

• Installed SQL Server

• Configure

• File Layout 

• Decide what is managed in code and what is not

• Partitions

• Files

• Compression

• Security



Deploy

Gold Schema Order of Execution

Gold Version

Target

Engine

Upgrade 
Script

Post 
script

Pre 
script



Deploy

Reality of Gold Schema

Gold Version

Target

Engine

Upgrade 
Script

Pre Model 
script

Post 
script

Pre 
script



Logins & Security

• Logins are optional

• Consider using Roles for Application Permissions

• Apply permissions to the roles only

• Post Deploy create Logins/Users/Role Mappings for environment

• Do include permissions in your project

• For audit purposes if nothing else



Scripting per Environment



Releasing Online

• Small Releases

• Large releases in a transaction will cause problems

• Watch out for lock escalation

• Use batches

• NOT NULL with a Default is slow depending on version

• 2012+ ok



Replication

• Always requires custom scripts

• Publish Profiles have options to prevent deployment

• Subscribers:

• Ensure columns are added Pre SSDT Comparison runs

• Possible Pre-Model Script to add to the publisher

• Publishers

• Either disable the replication of schema changes (large tables)

• Or just allow them through to the subscriber

• Add procs to project to drop/create your replication

• Execute in pre/post deployment when needed



Change Data Capture

• Allow 2 instances of monitoring

• Only an issue when adding new columns that must be tracked

• Write a wrapper function to the CDC functions

• Use a pre-Model script to:

• Add new column(s) – or use 2 releases just adding the column in the 
first

• Add new instance

• Process through instance 1

• Remove Instance 1

• Change wrapper function in project/release



Custom Scripts

• Run using PowerShell and SQLCMD

• Inject variables as needed (use the same names as SSDT)

• Useful for jobs/Replication/SSIS deployments etc



Deploy Contributors

• Available on GitHub as DACExtentions

• Allow you modify/inject code into the SSDT output scripts

• Contribute your own



Monitor Deployment Time in Test/Staging

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8

Se
co

n
d

s

Release Number

Deploy Time



Rolling Back (or not)

• Restore is the only true rollback

• Can you redeploy a previous build?

• It depends

• If data has changed - No

• If procs/views only then “maybe”

• Management often fail to understand this

• Forward Only

• Rollback is the last resort



Takeaway

• Keep everything in SSDT

• Even Pre-Model scripts – copy to output folder

• If your project will not build today:

• Mark items as “not in build” or delete them

• Move cross referencing objects to post deploy script

• Make at least part of the database build (even if just tables)

• Every scenario is different

• Solve with custom scripts

• Work to include the complexities in your test environments



Recommendations

• Release Often

• Release Small

• Only release when you are confident

• Feature Flags are a great way to avoid rollbacks


