
Common Database 
Deployment Gotchas



Simon D’Morias
SQL Server Consultant @ Sabin.io

Microsoft Certified Master: SQL Server

MCSE: Data Platform & Business Intelligence

simon.dmorias@sabin.io

mailto:simon.dmorias@sabin.io


Why database deployments are complicated?

• There is usually just one database

• Active Connections

• Database State

• Release rollbacks are often impossible



Gold Schema vs Migration Scripts

• Point in time representation of our database

• Migration take you from A to Z via B, C, D…

• Gold Schema goes direct from A to Z



Migration Scripts

Feature C

Script 1 Script 2 Script 3 Script 4

Feature B

Script 1 Script 2 Script 3

Feature A

Script 1 Script 2



Pros and Cons of Migration Scripts

PROS:

• Simple to manage (to start 
with)

• Schema and Data same 
process

CONS:

• No proper Source Control

• Transactional deployment 
not possible



Common Deployment Problems



Code vs Provisioning/Operational Changes

• Environments are provisioned to a specification

• Installed SQL Server

• Configure

• File Layout 

• Decide what is managed in code and what is not

• Partitions

• Files

• Compression

• Security



Deploy

Gold Schema Order of Execution
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Deploy

Reality of Gold Schema
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Logins & Security

• Logins are optional

• Consider using Roles for Application Permissions

• Apply permissions to the roles only

• Post Deploy create Logins/Users/Role Mappings for environment

• Do include permissions in your project

• For audit purposes if nothing else



Scripting per Environment



Releasing Online

• Small Releases

• Large releases in a transaction will cause problems

• Watch out for lock escalation

• Use batches

• NOT NULL with a Default is slow depending on version

• 2012+ ok



Replication

• Always requires custom scripts

• Publish Profiles have options to prevent deployment

• Subscribers:

• Ensure columns are added Pre SSDT Comparison runs

• Possible Pre-Model Script to add to the publisher

• Publishers

• Either disable the replication of schema changes (large tables)

• Or just allow them through to the subscriber

• Add procs to project to drop/create your replication

• Execute in pre/post deployment when needed



Change Data Capture

• Allow 2 instances of monitoring

• Only an issue when adding new columns that must be tracked

• Write a wrapper function to the CDC functions

• Use a pre-Model script to:

• Add new column(s) – or use 2 releases just adding the column in the 
first

• Add new instance

• Process through instance 1

• Remove Instance 1

• Change wrapper function in project/release



Custom Scripts

• Run using PowerShell and SQLCMD

• Inject variables as needed (use the same names as SSDT)

• Useful for jobs/Replication/SSIS deployments etc



Deploy Contributors

• Available on GitHub as DACExtentions

• Allow you modify/inject code into the SSDT output scripts

• Contribute your own



Monitor Deployment Time in Test/Staging
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Rolling Back (or not)

• Restore is the only true rollback

• Can you redeploy a previous build?

• It depends

• If data has changed - No

• If procs/views only then “maybe”

• Management often fail to understand this

• Forward Only

• Rollback is the last resort



Takeaway

• Keep everything in SSDT

• Even Pre-Model scripts – copy to output folder

• If your project will not build today:

• Mark items as “not in build” or delete them

• Move cross referencing objects to post deploy script

• Make at least part of the database build (even if just tables)

• Every scenario is different

• Solve with custom scripts

• Work to include the complexities in your test environments



Recommendations

• Release Often

• Release Small

• Only release when you are confident

• Feature Flags are a great way to avoid rollbacks


