Common Database
Deployment Gotchas



Simon D’Morias

SQL Server Consultant @ Sabin.io

Microsoft Certified Master: SQL Server
MCSE: Data Platform & Business Intelligence

simon.dmorias@sabin.io



mailto:simon.dmorias@sabin.io

Why database deployments are complicated?

* There is usually just one database

* Active Connections

* Database State

* Release rollbacks are often impossible



Gold Schema vs Migration Scripts

* Point in time representation of our database
* Migration take you from Ato Zvia B, C, D...
* Gold Schema goes direct from A to Z



Migration Scripts

Feature A

Feature B

Script 1 Script 2 Script 3

Feature C

Script 1 Script 2 Script 3 Script 4



Pros and Cons of Migration Scripts

PROS: CONS:
* Simple to manage (to start <+ No proper Source Control

with) * Transactional deployment
* Schema and Data same not possible
process



Common Deployment Problems



Code vs Provisioning/0Operational Changes

* Environments are provisioned to a specification
* Installed SQL Server
* Configure
* File Layout

* Decide what is managed in code and what is not
* Partitions
* Files
« Compression

e Security



Gold Schema Order of Execution

Gold Version Engine

.

Pre Upgrade Post O
script Script script Deploy

Extract
Model

Target



Reality of Gold Schema
>

Gold Version Engine

.

Pre Model

script

Extract

Target
8 Model



Logins & Security

* Logins are optional
* Consider using Roles for Application Permissions

* Apply permissions to the roles only
* Post Deploy create Logins/Users/Role Mappings for environment

* Do include permissions in your project

* For audit purposes if nothing else



Scripting per Environment

IF '$(Environment)' = 'DEV'

BEGIN
CREATE LOGIN blah FROM WINDOWS 'DOMAIN\user';
CREATE USER blah FOR LOGIN = blah;
ALTER ROLE rl_blah ADD MEMBER blah

END

IF '$(Environment)' = 'PROD'

BEGIN
CREATE LOGIN blah2 FROM WINDOWS 'DOMAIN‘\user2';
CREATE USER blah2 FOR LOGIN = blah2;
ALTER ROLE rl _blah ADD MEMBER blah2

END




Releasing Online

* Small Releases
* Large releases in a transaction will cause problems
* Watch out for lock escalation

* Use batches

* NOT NULL with a Default is slow depending on version
« 2012+ ok



Replication

* Always requires custom scripts
Publish Profiles have options to prevent deployment

Subscribers:
* Ensure columns are added Pre SSDT Comparison runs
* Possible Pre-Model Script to add to the publisher

Publishers
* Either disable the replication of schema changes (large tables)

* Orjust allow them through to the subscriber

Add procs to project to drop/create your replication
* Execute in pre/post deployment when needed



Change Data Capture

Allow 2 instances of monitoring
Only an issue when adding new columns that must be tracked
Write a wrapper function to the CDC functions

Use a pre-Model script to:

* Add new column(s) - or use 2 releases just adding the column in the
first

e Add new instance
* Process through instance 1
* Remove Instance 1

Change wrapper function in project/release



Custom Scripts

* Run using PowerShell and SQLCMD
* Inject variables as needed (use the same names as SSDT)

* Useful for jobs/Replication/SSIS deployments etc



Deploy Contributors

* Available on GitHub as DACExtentions
* Allow you modify/inject code into the SSDT output scripts

* Contribute your own



Monitor Deployment Time in Test/Staging

Deploy Time

200

Release Number



Rolling Back (or not)

* Restore is the only true rollback

* Can you redeploy a previous build?

* It depends
* If data has changed - No

* If procs/views only then “maybe”

Management often fail to understand this

Forward Only

Rollback is the last resort



Takeaway

* Keep everything in SSDT

 Even Pre-Model scripts - copy to output folder
* If your project will not build today:

* Mark items as “not in build” or delete them

* Move cross referencing objects to post deploy script

* Make at least part of the database build (even if just tables)
* Every scenario is different

* Solve with custom scripts

* Work to include the complexities in your test environments



Recommendations

* Release Often

* Release Small

* Only release when you are confident

* Feature Flags are a great way to avoid rollbacks



