
SQL Server 2016 Performance and Scalability 

Improvements

Marko Hotti
Sr. Technical Product Manager / SQL Server

Microsoft Corporation

marko.hotti@microsoft.com



Game-changing 
app performance 

Performance gains just by upgrading

Record-breaking performance

PROS

1000%
faster scoring

KPMG

250%
faster execution

Global ERP

700%
faster queries

Tableau

190%
faster queries

Leader in OLTP price/performance Leader in DW performance & price/performance

#1 in TPC-E price/perf (44 cores)

Windows Server 2012 R2

#2 in TPC-E price/perf (44 cores)

Windows Server 2012 R2

#1 in TPC-H 30TB (144 cores) Windows Server 2016

38% faster TPC-H 3TB (72 cores) Windows Server 2012 R2

#1 and 40% faster in TPC-H 1TB (44 cores) Windows Server 2012 R2

TPC results as of April 2016 http://www.tpc.org/default.asp

271x faster queries 
Spatial line string

3.6x faster 

DW queries on 

AlwaysOn replicas

34x faster queries 

In-memory Columnstore

10x faster

In-Memory 

temp objects

15x faster 

queries Table 

valued parameters

20% faster

Auto NUMA 

partitioning

100x faster 

Batch/Bulk 

operations

7x faster 

throughput

AlwaysOn

19x faster 

Spatial native

Functions

7-10x faster

DBCC CheckDB

20x faster

Indirect 

checkpoint

2.7x faster

Batch request

per sec

3x faster 

Spatial index/

queries up to

10x faster

XEvent reader

2.6x faster 

DW queries 

with new CE

Faster queries Faster operations Faster throughput



SQL Server 2016 & Windows Server 2016 Better Together

Massive scale for in-
memory performance

Simple, flexible HA 
and DR
No domain join needed

Unparalleled security
Fine-grained security controls

Built-in anti-malware

Unparalleled scalability 

with Windows Server 2016

12 TB of memory WS 2016 max 

cores

Scalability



Hyper-V cluster with local storage

Microsoft Storage Spaces Direct

What is Storage Spaces Direct?
Evolution of Storage Spaces

Servers with local storage

Highly available and scalable

Storage for Hyper-V virtualization and private 

cloud

Why Storage Spaces Direct?
New device types

Lower-cost flash storage with SATA SSDs

Better flash performance with NVMe SSDs

Simplicity

Ethernet/RDMA network as storage fabric

No need for complex multi-initiator fabric

Seamless capacity and performance expansion

Scalability



Support for Windows Server Core

Windows Server edition with smallest footprint
Reduced memory and disk requirements

Fewer running processes and services: greater stability

Simplified management

Requires less maintenance and fewer OS patches, 

greatly reduced downtime

50‒60 percent less patching and fewer OS reboots

Scalability



In-Memory OLTP 
enhancements



SQL Server engine

In-Memory OLTP

7

New high-performance, memory-optimized online 

transaction processing (OLTP) engine integrated into 

SQL Server and architected for modern hardware 

trends

Memory-optimized 

table file group

In-Memory OLTP 

engine: Memory-

optimized tables & 

indexes

Native compiled SPs 

& schema

In-Memory OLTP 

compiler

Transaction log Data file group



Performance and Scaling Improvements

Supports up to 2 TB of user data in durable memory optimized 

tables in a single database.

Multiple threads to persist memory-optimized tables 

Parallel Support

• Parallel scan for memory-optimized tables and HASH indexes

• Parallel plan support for accessing memory-optimized tables



Improved scaling

In-Memory OLTP 

engine has been 

enhanced to scale 

linearly on servers up to 

4 sockets

Other enhancements include:

7x

Performance



New Transaction Performance Analysis Overview report

New report replaces the 

need to use the 

Management Data 

Warehouse to analyze 

which tables and stored 

procedures are candidates 

for in-memory 

optimization

Performance



Operational analytics: 

disk-based and in-

memory tables



Traditional operational/analytics architecture

Key issues

Complex implementation

Requires two servers (capital 

expenditures and operational 

expenditures) 

Data latency in analytics

High demand; 

requires real-time analytics

IIS Server

BI analysts 

Performance



Minimizing data latency for analytics 

Challenges

Analytics queries are resource intensive and can 

cause blocking

Minimizing impact on operational workloads

Sub-optimal execution of analytics on relational 

schema

Benefits

No data latency

No ETL 

No separate data warehouse

IIS Server

BI analysts 

Performance



Operational analytics with columnstore index

Key points

Create an updateable NCCI for analytics 

queries

Drop all other indexes that were created 

for analytics 

No application changes

Columnstore index is maintained just like 

any other index

Query optimizer will choose columnstore

index where needed

B-tree index

Delta row groups

Performance

Nonclustered columnstore index (NCCI) 



Operational analytics: columnstore on in-memory tables

No explicit delta row group

Rows (tail) not in columnstore stay in In-Memory OLTP table

No columnstore index overhead when operating on tail

Background task migrates rows from tail to columnstore in 

chunks of 1 million rows

Deleted Rows Table (DRT) – Tracks deleted rows 

Columnstore data fully resident in memory 

Persisted together with operational data

No application changes required

In-Memory OLTP table

Deleted Rows Table tail

nonclustered index

Hash index

Performance

Columnstore Index



Greater scalability
Load-balancing readable secondaries

Increased number of automatic failover targets

Log transport performance

Supports Clustered ColumnStore

Improved manageability
DTC support

Database-level health monitoring

Group Managed Service Account

Domain-independent Availability Groups

AG_Listener

New York
(Primary)

Asynchronous data 
movement

Synchronous data 
movement

Unified HA solution

Enhanced AlwaysOn Availability Groups

AG

Hong Kong
(Secondary)

AG

New Jersey
(Secondary)

AG

Availability



Solution Pattern: Leveraging  Columnstore + 

AG for performance and scale

SQL Server 2016

Columnstore

AlwaysOn Availability Groups:

ETL loading data into primary

Queries / Cube processing against secondary

HA + Read Scale Out

AlwaysOn Availability Groups

Primary
Second

ary
ROLAP 

CubeCube Processing

Report

Report

Report

ETL

• New Hardware:

• 16 cores/768GB RAM SSD

• Database Size:

• Uncompressed: 12.5 TB

• Compressed using Columnstore: 4.5 TB

• Dramatic performance improvement



Stretch 
Database



Ever-growing data, ever-shrinking IT

What to do?

Expand server and storage

Move data elsewhere

Delete

Massive tables (hundreds of 
millions/billions of rows, TBs size)

Users want/need to retain data 
indefinitely

Cold data infrequently accessed 
but must be online

Datacenter consolidation

Maintenance challenges

Business SLAs at risk

Hybrid solutions



Capability

Stretch large operational tables 

from on-premises to Azure with 

the ability to query

Benefits

Stretch SQL Server into Azure
Securely stretch cold tables to Azure with remote query processing

SQL
SERVER 

2016

Azure

Hybrid solutions



Stretch Database architecture

How it works

Creates a secure linked server definition 

in the on-premises SQL Server

Targets remote endpoint with linked 

server definition

Provisions remote resources and begins 

to migrate eligible data, if migration 

is enabled

Queries against tables run against both 

local database and remote endpoint

Remote 

endpoint

Remote 
data

Azure

In
te

rn
e
t b

o
u

n
d

a
ryLocal 

database 

Local 
data

Eligible 
data

Linked servers

Hybrid solutions



Queries continue working

Business applications continue 
working without disruption

DBA scripts and tools work as 
before (all controls still held in local 
SQL Server)

Developers continue building or 
enhancing applications with existing 
tools and methods

Hybrid solutions



Advanced security features supported

Data in motion always via secure 
channels (TLS 1.1/1.2)

Always Encrypted supported if
enabled by user (encryption key 
remains on-premises)

Row-Level Security already working

SQL Server and SQL Azure auditing 
already working

Hybrid solutions



“It Just Works Faster”

Improvements in SQL Server 2016 that make it run faster 

without enabling new features



Query Optimizer Improvements

There are two key changes

1. SQL Server now leverages parallelism when sample statistics are 
created either explicitly or as part of autostats

2. SQL Server now uses a sub linear threshold to trigger 
AUTO_UPDATE_STATISTICS computation to address the auto 
statistics updates especially for large tables. Until now, SQL Server 
used a fixed % of number of changes (i.e. delete, insert or updates) 
to a column irrespective of the size of the table. With this change, 
stats computation will get triggered at much lower % for larger 
tables. 



Encryption enhancements

Hardware accelerated encryption/decryption for TDE

Implements next generation of Microsoft cryptography

Takes advantage of specialized microprocessor instructions

Improves performance as much as 3x to 10x

Parallelizable decryption

Decryption now supported as parallelizable (used to be sequential only)

Dramatically improved response times for queries with encrypted data columns

Scalability



Automatic TEMPDB Configuration

• Number of files will default to the lower of 8 

or number of logical cores as detected by 

setup

• Initial size & Autogrowth

• TF 1117 is enabled by default for TEMPDB

• Enable Instant File Initializationif you specify 

a very large initial size or autogrowth value

• Specify multiple folders/drives to spread the 

datafiles across several volumes. Each file 

will be placed in a round-robin manner

• For Log File Autogrowth default value of 

64MB is provided to so that the number of 

Virtual Log Files (VLFs) during initial creation 

is a small and manageable number and with 

appropriate size so that the unused log 

space can be reclaimed easily



-T1117 and –T1118 changes for TEMPDB and user 

databases

TEMPDB

One of these changes is TEMPDB always assumes -T1117 and -T1118 behavior.

-T1117 - When growing a data file grow all files at the same time so they remain the same size.  

Reducing allocation contention points.

-T1118 - When doing allocations for user tables always allocate full extents.  Reducing contention of 

mixed extent allocations

In summary, SQL Server 2016 no longer requires one to turn on TF 1117 or 1118.



Trace Flags 1117 and 1118: User Databases and 

TempDB
User Database

For User Databases, trace flags 1117 and 1118 have been replaced with new extensions in 

ALTER DATABASE commands.  Use the ALTER DATABASE syntax to enable or disable the 

desired trace flag behavior at a database level.

-- Trace Flag 1118

Trace flag 1118 for user databases is replaced by a new ALTER DATABASE setting -

MIXED_PAGE_ALLOCATION.

Default value of the MIXED_PAGE_ALLOCATION is OFF meaning allocations in the database 

will use uniform extents. 

The setting is opposite in behavior of the trace flag (i.e. TF 1118 OFF and 

MIXED_PAGE_ALLOCATION ON provide the same behavior and vice-versa).

Syntax:

ALTER DATABASE <dbname> SET MIXED_PAGE_ALLOCATION { ON | OFF } 

For more information see https://msdn.microsoft.com/en-US/library/bb522682.aspx

https://msdn.microsoft.com/en-US/library/bb522682.aspx


-T1117 and –T1118 changes for TEMPDB and user 

databases

Example: 

--Default value is OFF so all allocations in AdventureWorks will use uniform extents. To disable and 

use mixed extents turn the setting to on.

ALTER DATABASE AdventureWorks SET MIXED_PAGE_ALLOCATION ON; 

Catalog changes:

A new column is_mixed_page_allocation_on is added to DMV sys.databases that shows which 

allocation type (uniform or mixed) is being used. For more information see, 

https://msdn.microsoft.com/en-us/library/ms178534.aspx

https://msdn.microsoft.com/en-us/library/ms178534.aspx


Instant File Initialization
Database Instant File Initialization was added several SQL 

Server releases ago.   The instant file initialization feature 

scales the creation and expansion (growth) of database, 

DATA files.    The 'Manage Volume Privilege' option is off 

by default preventing many SQL Server installations from 

taking advantage of the feature.

SQL Server 2016 Setup provides the option to enable 

'Perform Volume Maintenance Task' privilege to the SQL 

Server Service SID. This privilege enables instant file 

initialization by avoiding zeroing of data pages.  For 

security and performance considerations see Database 

Instant File Initialization topic. 

For Failover Cluster instance, each node will be configured 

individually for this option since the privilege belongs to 

local security policy. The option will show and can be 

enabled when adding each node. 

If you are installing SQL Server using 

command line or a configuration file, set 

the SQLSVCINSTANTFILEINIT parameter 

to True to enable instant file initialization 

for SQL Server service account. 

https://msdn.microsoft.com/en-us/library/ms175935.aspx
https://msdn.microsoft.com/en-us/library/ms175935.aspx


Core engine scalability

Dynamic partitioning of thread-safe memory objects by 

non-uniform memory access (NUMA) node or by CPU

Enables greater scalability of high-concurrency workloads running on NUMA hardware

Dynamically promotes CMemThread to be partitioned by NUMA node or by CPU based on 

workload characteristics and contention factors

Eliminates need for trace flag, but also dynamically determines partition based on contention

Scalability



SQL Server 2016 Runs Faster On Same Hardware

• A bold statement that any SQL Server professional can stand behind with 
confidence.

• No application changes needed, just works

Throughput 

MB/s

Avg CPU%

(secondary)

SQL 2014 82 17

SQL 2016 540 36

14.9x
17.7x 19.4x 19.8x 24.1x 34.2x

0

100

200

300

400

500

600

700

800

900

1 2 4 8 16 32

E
xe

cu
ti

o
n

 T
im

e
 [

s]

Query execution time Batch vs Row

Batch Row

Columnstore 34X faster AlwaysOn 7X faster



TPC-H queries with new cardinality estimation

SQL Server 2016 (old CE)

SQL Server 2016 (new CE)

994,861ms/loop

375,666ms/loop

2.6x
faster

Tests running the 22 queries that make up the TPC-H benchmark test using a 3,000 warehouse workload 

(900 million rows in order_line table). Used traceflag 9481 to force the old cardinality estimation algorithm 

and compared the results using the new cardinality estimation.

Tests performed on Intel Xeon CPU E7-8890v3 @ 2.50GHz, 1.5 TB RAM, and Tegile Flash Storage Array.



DBCC CheckDB

Machine 32GB RAM, 4 Core Hyper-threaded 
enabled 2.8Ghz, SSD Storage 

SQL Server Out of the box, default installation

SQL Server 2014

SQL Server 2016

12,880 ms

1,676 ms

7x
faster

https://blogs.msdn.microsoft.com/psssql/2016/02/25/sql-

2016-it-just-runs-faster-dbcc-scales-7x-better/

https://blogs.msdn.microsoft.com/psssql/2016/02/25/sql-2016-it-just-runs-faster-dbcc-scales-7x-better/


DBCC CheckDB

Internally DBCC CHECK* uses a page scanning coordinator design (MultiObjectScanner).  

SQL Server 2016 changes the internal design (CheckScanner), applying no lock semantics and design similar to 
those used with In-Memory Optimized (Hekaton) objects, allowing DBCC operations to scale far better than 
previous releases.

The following chart shows the same 1TB database testing.

.

• MultiObjectScanner = Older design 
• CheckScanner = New design 



DBCC CHECKDB extended logical checks

https://blogs.msdn.microsoft.com/psssql/2016/03/01/sql-2016-it-just-runs-faster-dbcc-extended-checks/

Starting with SQL Server 2016, additional checks on filtered indexes, persisted computed columns, and UDT 

columns will not be run by default to avoid the expensive expression evaluation. This will greatly reduce the 

time to run CHECKDB on databases that have these objects. 

Physical consistency checks of these objects are still done . This means only when 

EXTENDED_LOGICAL_CHECKS option is specified, the expression evaluation is performed. This is in 

addition to other logical checks that are only performed (indexed view, XML indexes, and spatial indexes) 

when EXTENDED_LOGICAL_CHECKS option is specified.

For filtered indexes, CHECKDB has also been improved to skip any data record that is not qualified for 

being indexed by target NC index.

https://blogs.msdn.microsoft.com/psssql/2016/03/01/sql-2016-it-just-runs-faster-dbcc-extended-checks/


Spatial Line String query improvements

SQL Server 2014

SQL Server 2016

26,600 ms

87 ms 271x
faster



Spatial Native Function query improvements

Machine 32GB RAM, 4 Core Hyper-threaded 
enabled 2.8Ghz, SSD Storage 

SQL Server Out of the box, default installation

SQL Server 2014

SQL Server 2016

2,830 ms

144 ms

19x
faster



Table valued parameters using spatial columns

SQL Server 2016

SQL Server 2014

120,000 rows/sec

8000 rows/sec 15x
faster

https://blogs.msdn.microsoft.com/psssql/2016/03/08/sql-2016-it-just-runs-faster-tvps-with-spatial-

columns/



Table valued parameters using spatial columns

https://blogs.msdn.microsoft.com/psssql/2016/03/08/sql-2016-it-just-runs-faster-tvps-with-spatial-columns/

TVP Before the 
Fix:  

8000 
rows/sec

TVP After the 
Fix: 

120,000 
rows/sec

Table Valued Parameters (TVPs) can be used as input parameter(s) to stored 
procedures.   A problem with TVP parameters, containing spatial columns, limits 
scalability.   When a TVP parameter arrives at the SQL Server the rows are stored in 
TEMPDB.   The problem caused the Spatial assembly to be reloaded as each spatial row 
and column was processed.

SQL Server 2016 corrects the scalability problem, using native spatial validation(s), 
increasing performance by 15 times or more.



Spatial Index Builds Faster

https://blogs.msdn.microsoft.com/psssql/2016/03/08/sql-2016-it-just-runs-faster-tvps-with-spatial-columns/

Index creation and tessellation can be intensive, spatial activities.    

Along with the native and TVP enhancements additional work to 

optimize index creation and tessellation was completed.

Testing reveals that building a spatial index on SQL Server 2016, with 

the improved design, can be more than 2 times faster than SQL Server 

2012 or 2014 on the same data and hardware.  It is common place for 

spatial tables to be 300 million or more rows.   Reducing the index 

build time by a factor of 2x or more greatly reduces the need 

maintenance window(s.)



Automatic Soft NUMA

Soft NUMA can be used to divide a physical node into multiple logical nodes presenting a different 

layout to the entire SQL Server and adjusting the partitioning to optimize scalability and 

performance.  Microsoft recommends use of Soft NUMA on the newer, large CPU NUMA system 

deployments to increase performance.

During startup, SQL Server 2016 interrogates the hardware layout and automatically configures Soft 

NUMA on systems reporting 8 or more CPUs per NUMA node.   The partitioning triggers various 

adjustments throughout the database engine improving scalability and performance.  The 

Automatic Soft NUMA logic considers logical CPU ratios, total CPU counts and other factors, 

attempting to create soft, logical nodes containing  8 or fewer CPUs each.

Your mileage may vary but, here is a testing results from the SQL Server 2016 test harness:

"With HT aware auto soft-NUMA, we get up-to 30% gain in query performance when DOP is set to 

the number of physical cores on a socket (12 in this case) using Automatic Soft NUMA."

http://blogs.msdn.com/b/psssql/archive/2010/04/02/how-it-works-soft-numa-i-o-completion-thread-lazy-writer-workers-and-memory-nodes.aspx


Updated Scheduling Algorithms

SQL Server 2016 gets a scalability boost from scheduling updates.   Testing uncovered issues with the percentile scheduling based algorithms in SQL Server 2012 and 2014.  A large, CPU quantum 
worker and a short, CPU quantum worker can receive unbalanced access to the scheduling resources.

Take the following example.  Worker 1 is a large, read query using read ahead and in-memory database pages and Worker 2 is doing shorter activities.   Worker 1 finds information already in 
buffer pool and does not have to yield for I/O operations.    Worker 1 can consume its full CPU quantum.

On the other hand, Worker 2 is performing operations that require it to yield.  For discussion let's say Worker 2 yields at 1/20th of its CPU, quantum target.  Taking resource governance and other 
activities out of the picture the scheduling pattern looks like the following.

Worker 1 is getting ~5 times more CPU cycles than Worker 2.    In testing we found issues with various workloads and system tasks.   If Worker 2 is the log writer it takes longer to harden log 
records, which holds locks, which can lead to blocking and throughput issues.

SQL Server 2016 and Windows Azure SQL Database (WASD) monitors the quantum usage patterns allowing all workers to get fair treatment.   The same pattern described above looks like the 
following on SQL Server 2016.   In this simplistic example Worker 2 is allowed to consume repeated quantum's preventing Worker 1 from monopolizing the scheduler in an unfriendly pattern.

Note: The scheduler changes were deployed to Windows Azure SQL Server Database in March of 2014.



And many more….

https://blogs.msdn.microsoft.com/psssql/2016/02/23/sql-2016-it-

just-runs-faster-announcement/



Query Store

Your flight data recorder 
for your database



Problems with query performance

Fixing query plan choice regressions is difficult
• Query plan cache is not well-suited for performance troubleshooting

Long time to detect the issue (TTD)
• Which query is slow? Why is it slow? 

• What was the previous plan?

Long time to mitigate (TTM)
• Can I modify the query?

• How to use plan guide?

Performance

Temporary
perf issues

Website
Is down

DB
upgraded

Database 
is not 

working

Impossible 
to predict / 
root cause

Regression 
caused by 

new bits



The solution: Query Store

Dedicated store for query workload performance data 
Captures the history of plans for each query

Captures the performance of each plan over time

Persists the data to disk (works across restarts, upgrades, and recompiles)

Significantly reduces TTD/TTM
Find regressions and other issues in seconds

Allows you to force previous plans from history

DBA is now in control

Performance



Durability latency controlled by DB option

DATA_FLUSH_INTERNAL_SECONDS

Compile

Execute

Plan store

Runtime 
stats

Query 

Store 

schema

Query data store

Collects query texts (plus all relevant properties)

Stores all plan choices and performance metrics

Works across restarts / upgrades / recompiles

Dramatically lowers the bar for performance 

troubleshooting 

New Views

Intuitive and easy plan forcing

Performance



Query Store write architecture

Query StoreQuery Execution

Internal 

tables

Query and 

Plan Store

Runtime stats

store
Query exec. stats

Compile

Execute

async

Query text and plan

Performance



Query StoreQuery Execution

Internal 

tables

Query and 

Plan Store

Runtime stats

store
Query exec. stats

Compile

Execute

async

Query text and plan

Query Store read architecture

Views merge in-memory and on-disk content

Users always see ‘latest’ data
Query Store views

Performance



Query text Query Plan
Runtime 

stats

Context

settings
Runtime 

stats 

interval

One row per query text per  

plan affecting option

(example: ANSI NULLS on/off)

One row per plan 

(for each query)
One row per plan 

per time interval 

(example: 5 min)

1 - n

Compile stats:

query_store_query_text

query_context_settings

query_store_query

query_store_plan

Runtime stats:

query_store_runtime_stats_interval

query_store_runtime_stats

sys.

Internal tables Exposed views

Query Store schema explained

1 - n

Performance



Keeping stability while upgrading to SQL Sever 2016

Install bits

Keep 

existing

compat. 

level

Run Query 

Store 

(create a 

baseline)

Move to 

vNext 

CompatLevel

Fix 

regressions 

with plan 

forcing

SQL Server 2016

QO enhancements tied to database compatibility level

Performance



The Query Store 
feature provides DBAs 
with insight on query 
plan choice and 
performance

Monitoring performance by using the Query Store

Performance



/* (1) Turn ON Query Store */

ALTER DATABASE MyDB SET QUERY_STORE = ON;

/* (2) Review current Query Store parameters */
SELECT * FROM sys.database_query_store_options

/* (3) Set new parameter values */
ALTER DATABASE MyDB
SET QUERY_STORE (
OPERATION_MODE = READ_WRITE,
CLEANUP_POLICY = (
STALE_QUERY_THRESHOLD_DAYS = 30

),
DATA_FLUSH_INTERVAL_SECONDS = 3000,
MAX_SIZE_MB = 500,
INTERVAL_LENGTH_MINUTES = 15

);

/* (4) Clear all Query Store data */
ALTER DATABASE MyDB SET QUERY_STORE CLEAR;

/* (5) Turn OFF Query Store */
ALTER DATABASE MyDB SET QUERY_STORE = OFF;

/* (6) Performance analysis using Query Store views*/
SELECT q.query_id, qt.query_text_id, qt.query_sql_text,
SUM(rs.count_executions) AS total_execution_count
FROM
sys.query_store_query_text qt JOIN
sys.query_store_query q ON qt.query_text_id =
q.query_text_id JOIN
sys.query_store_plan p ON q.query_id = p.query_id JOIN
sys.query_store_runtime_stats rs ON p.plan_id = rs.plan_id
GROUP BY q.query_id, qt.query_text_id, qt.query_sql_text
ORDER BY total_execution_count DESC

/* (7) Force plan for a given query */
exec sp_query_store_force_plan
12 /*@query_id*/, 14 /*@plan_id*/

DB-level feature exposed 

through T-SQL extensions

ALTER DATABASE

Catalog views (settings, compile, and runtime stats)

Stored Procs (plan forcing, query/plan/stats cleanup)

Performance



Live query statistics

View CPU/memory usage, execution time, query 

progress, and more 

Enables rapid identification of potential 

bottlenecks for troubleshooting query 

performance issues

Allows drill down to live operator level statistics:

Number of generated rows

Elapsed time

Operator progress 

Live warnings

Performance



Summary: Query Store

Capability

Query Store helps customers quickly find and fix query performance issues

Query Store is a ‘flight data recorder’ for database workloads

Benefits

Greatly simplifies query performance troubleshooting

Provides performance stability across SQL Server upgrades

Allows deeper insight into workload performance

Performance




