
www.sqlbi.com

Advanced Relationships in DAX

Different techniques to handle relationships in DAX

Who We Are

o BI Experts and Consultants

o Founders of www.sqlbi.com

• Problem Solving

• Complex Project Assistance

• Data Warehouse Assessments and Development

• Courses, Trainings and Workshops

o Book Writers

o Microsoft Gold Business Intelligence Partners

o SSAS Maestros – MVP – MCP

Introduction

o Tabular handles only one-to-many relationships

o The key to advanced relationships is DAX

• Calculated Relationships

• Virtual Relationships

• Bidirectional Filtering

• Many-to-many relationships

o Beware of performance, relationships come at a cost

o Let us see some examples

Multi-Column Relationships

o Tabular supports standard 1:N relationships

o Sometimes you need relationships than span over more

than a single column

Multi-Column Relationships

1st Solution: Create Relationship

If the relationship is needed in the model, then you need to create a calculated column to set

the relationship

ProductAndReseller =

Discounts[ProductKey] & "-" & Discounts[ResellerKey]

2nd solution: Calculated Column

Using LOOKUPVALUE you can avoid setting the relationship and you denormalize the attribute

in the fact table

Discount =

LOOKUPVALUE (
Discounts[MaxDiscount],
Discounts[ProductKey], FactResellerSales[ProductKey],
Discounts[ResellerKey], FactResellerSales[ResellerKey]

)

Static Segmentation

Segmenting the prices

o Price changes over time

• Discounts

• Price variations

o Continuous dimension

o High fragmentation

o Segmentation

• From 0 to 100 USD

• From 101 to 500

Segmentation in SQL

SELECT
P.BandName,
SUM (S.ExtendedAmount)

FROM dbo.FactResellerSales S
JOIN PriceBands P
ON S.UnitPrice BETWEEN P.FromPrice AND P.ToPrice

GROUP BY
P.BandName

Building a data driven model with

SQL is very easy because you can

leverage the BETWEEN JOIN,

which is not available in Tabular

BandName FromPrice ToPrice

VERY LOW 0 5

LOW 5 30

MEDIUM 30 100

HIGH 100 500

VERY HIGH 500 9999

Static segmentation in DAX

Leverage CALCULATE and set the relationship inside the formula, producing a materialized

version of the calculated relationship

Segment Price =

CALCULATE (
VALUES ('Price Segments'[Segment Name]),
FILTER (

'Price Segments',
AND (
'Price Segments'[FromPrice] < Sales[Net Price],
'Price Segments'[ToPrice] >= Sales[Net Price]

)
)

)

Dynamic Segmentation

Dynamic Segmentation
SegmentCode SegmentName MinSales MaxSales

1Very Low 0 100

2Low 100 1000

3Medium 1000 5000

4High 5000 10000

6Very High 10000 9999999

The Data Model

Dynamic Segmentation

This time, the relationship is “virtual”.

It does not exists outside of the formula, no materialization

NumOfCustomersInSegment =

CALCULATE (
COUNTROWS (Customer),
FILTER (

Customer,
AND (

[Sales Amount] > MIN ('Sales Segments'[MinSales]),
[Sales Amount] <= MAX ('Sales Segments'[MaxSales])

)
)

)

Working at different granularity

Relationships at different granularities are a challenge

Different Granularity

o Sales recorded at levels of

• Day

• Product

o Budget stored in Excel

• Year

• Brand

• Country

Options for granularity

o Change the data model

• Create tables for the required granularity

• Might create an unclear data model

o Force granularity with one element

• For example, with dates, 1° of the month

• Not an option for all the data models

o Rely on more complex DAX code

• A bit harder to implement

• Much more flexible

• Might be slow on large data models

Granularity in DAX

By using set functions you can move the filter from one table to another one (from Product and

Customer to Budget in the example)

BudgetAmt =

CALCULATE (
SUM (Budget[Budget]),
INTERSECT (

VALUES (Budget[Brand]),
VALUES ('Product'[Brand])

),
INTERSECT(

VALUES (Budget[CountryRegion]),
VALUES (Customer[CountryRegion])

)
)

Many-to-many

Many ways to handle many-to-many relationships

Many-to-many Relationships

Many to Many Account – Customer

Bridge_AccountCustomer

PK,FK1 ID_Account

PK,FK2 ID_Customer

Dim_Account

PK ID_Account

 Account

Dim_Customer

PK ID_Customer

 CustomerName

Dim_Date

PK ID_Date

 Date

Dim_Type

PK ID_Type

 Type

Fact_Transaction

PK ID_Transaction

FK1 ID_Account

FK3 ID_Type

FK2 ID_Date

 Amount

Bidirectional Filtering

o Many-to-many require a bridge table

• Enable bidirectional filtering

• On both relationships

o Issues

• Bridge table must be complete

• Standard, plain, many-to-many

• Bidirectional filtering might result in ambiguous models

What is ambiguity?

Solving ambiguity
The filter is not
intuitive at all

Ambiguous model

Sales Inventory

Product Warehouse

Store

Region

No ambiguity, still too complex

Sales Inventory

Product Warehouse

Store

Region

Store = “A”

Sales
Store = “A”

Of sales
Store = “A”

Sold where
Store = “A”

Inventory
Store = “A”

Of Inventory
Store = “A”

No ambiguity, still too complex

Sales Inventory

Product Warehouse

Store

Region

Country=“USA”

Sales
Country=“USA”

Sold where
Country=“USA”

With sales
Country=“USA”

Of stores with sales
Country=“USA”

Of stores with sales
Country=“USA”

Relationship rules

o Single star schema

• Enable bidirectional filtering

• Beware of performance

o Any other model, including multiple star schemas

• Keep all relationship unidirectional

• Enable bidirectional when needed

• Only when needed

Direct Table Filtering

Leveraging table expansion and filter context, you can obtain the same result, without enabling

two-way relationships

AmountM2M :=

CALCULATE (
SUM (Transaction[Amount]),
AccountCustomer

)

MANY-TO-MANY with SUMMARIZE

Instead of using a table name, you can use any table expression that can filter the fact table.

In this example, we obtain the same result using SUMMARIZE

AmountM2M :=

CALCULATE (
SUM (Transaction[Amount]),
SUMMARIZE (

AccountCustomer,
Account[ID_Account]

)
)

New Customers

o Many useful calculations

• Customers

• Buying customers

• New Customers

• Returning customers

o We will see two versions of the formula

• The naïve one (created by me)

• The fast one (learned while I was pretending to teach)

Computing new customers

The fast version is much better than the naïve one, because the first SUMMARIZE results in a

pure SE query cached by the engine only once

NewCustomersFast =

COUNTROWS (
FILTER (

SUMMARIZE (
CALCULATETABLE (Sales, ALL ('Date')),
Sales[CustomerKey],
"DateOfFirstBuy", MIN (Sales[OrderDateKey])

),
CONTAINS (

VALUES ('Date'[DateKey]),
'Date'[DateKey],
[DateOfFirstBuy]

)
)

)

Conclusions

o Tabular handles only one-to-many relationships

o The key to advanced relationships is DAX

• Calculated Relationships

• Virtual Relationships

• Bidirectional Filtering

• Many-to-many relationships

o Beware of performance, relationships come at a cost

o Have fun with DAX!

Thank you!

Check our articles, whitepapers and courses on

www.sqlbi.com

