
Biml for Beginners:
Speed up your SSIS development

Cathrine Wilhelmsen  ·  SQLBits XV ·  May 7th 2016



Session Description

SSIS is a powerful tool for extracting, transforming and loading data, but creating and maintaining a 
large number of SSIS packages can be both tedious and time-consuming. Even if you use templates 
and follow best practices you often have to repeat the same steps over and over and over again. 
Handling metadata and schema changes is a manual process, and there are no easy ways to 
implement new requirements in multiple packages at the same time.

It is time to bring the Don't Repeat Yourself (DRY) software engineering principle to SSIS projects. First 
learn how to use Biml and BimlScript to generate SSIS packages from database metadata and 
implement changes in all packages with just a few clicks. Then take the DRY principle one step further 
and learn how to update all packages in multiple projects by separating and reusing common code. 

Speed up your SSIS development by using Biml and BimlScript, and see how you can complete in a day 
what once took more than a week!



Tools & Projects

Code Management

The Basics
a



Cathrine Wilhelmsen

@cathrinew

cathrinewilhelmsen.net

Data Warehouse Architect
Business Intelligence Developer



SSIS developer?

Easily bored?

Tired of repetitive work?

You…



Long development time?

Many SSIS packages?

Frequent requirement changes?

Work…



Ever experienced this?

takeoff!

new standards

crash landing!



Ready for a change?





Business Intelligence Markup Language

Easy to read and write XML language

Describes business intelligence objects:

• Databases, Schemas, Tables, Views, Columns

• SSIS Packages

• SSAS Cubes

What is Biml?



From Traditional SSIS to Agile SSIS

Traditional SSIS: Plumbing Agile SSIS: Business Logic



Will Biml solve all your problems?

Probably not...

Biml is a tool for generating SSIS packages

Biml is not a pre-defined ETL framework

Biml is not a tool for automated deployment

...but it will solve many problems!



How can Biml help you?

Timesaving: Many SSIS Packages from one Biml file

Reusable: Write once and run on any platform

Flexible: Start simple, expand as you learn



What do you need?



…or you can use the new Biml tools



How does it work?

…generated packages look exactly like manually created packages



Biml syntax

<Biml xmlns="http://schemas.varigence.com/biml.xsd">

<Packages>

<Package Name="EmptyPackage1"></Package>

<Package Name="EmptyPackage2"/>

</Packages>

</Biml>



<Biml xmlns="http://schemas.varigence.com/biml.xsd">

<Packages>

<Package Name="EmptyPackage1"></Package>

<Package Name="EmptyPackage2"/>

</Packages>

</Biml>

Biml syntax: Root Element



<Biml xmlns="http://schemas.varigence.com/biml.xsd">

<Packages>

<Package Name="EmptyPackage1"></Package>

<Package Name="EmptyPackage2"/>

</Packages>

</Biml>

Biml syntax: Collections of Root Objects



<Biml xmlns="http://schemas.varigence.com/biml.xsd">

<Packages>

<Package Name="EmptyPackage1"></Package>

<Package Name="EmptyPackage2"/>

</Packages>

</Biml>

Biml syntax: Elements



<Biml xmlns="http://schemas.varigence.com/biml.xsd">

<Packages>

<Package Name="EmptyPackage1"></Package>

<Package Name="EmptyPackage2"/>

</Packages>

</Biml>

Biml syntax: Attributes



<Biml xmlns="http://schemas.varigence.com/biml.xsd">

<Packages>

<Package Name="EmptyPackage1"></Package>

<Package Name="EmptyPackage2"/>

</Packages>

</Biml>

Biml syntax: Full vs. Shorthand Syntax



<Biml xmlns="http://schemas.varigence.com/biml.xsd">

<Packages>

<Package Name="EmptyPackage1">...</Package>

<Package Name="EmptyPackage2"/>

</Packages>

</Biml>

Biml syntax: Full vs. Shorthand Syntax



Let's generate
some packages!



Ok, so we can go from Biml to SSIS…



…can we go from SSIS to Biml?



Yes! :)



Let's reverse-engineer
some packages!



The magic is in the



What is BimlScript?

Extend Biml with C# or VB code blocks

Import database structure and metadata

Loop over tables and columns

Expressions replace static values

Allows you to control and manipulate Biml code



BimlScript Code Nuggets

<#@ …  #>  Directives (Compiler instructions)

<#  …  #>  Control Nuggets (Control logic)

<#= …  #>  Text Nuggets (Returns string)

<#+ …  #>  Class Nuggets (Create helper classes)



BimlScript Syntax

<Biml xmlns="http://schemas.varigence.com/biml.xsd">
<Packages>

<# foreach (var table in RootNode.Tables) { #>
<Package Name="Load_<#=table.Name#>"></Package>

<# } #>
</Packages>

</Biml>



BimlScript Syntax: Control Nuggets

<Biml xmlns="http://schemas.varigence.com/biml.xsd">
<Packages>

<# foreach (var table in RootNode.Tables) { #>
<Package Name="Load_<#=table.Name#>"></Package>

<# } #>
</Packages>

</Biml>



BimlScript Syntax: Text Nuggets

<Biml xmlns="http://schemas.varigence.com/biml.xsd">
<Packages>

<# foreach (var table in RootNode.Tables) { #>
<Package Name="Load_<#=table.Name#>"></Package>

<# } #>
</Packages>

</Biml>



How does it work?



Yes, but how does it work?



Yes, but how does it actually work?

<Biml xmlns="http://schemas.varigence.com/biml.xsd">
<Packages>

<# foreach (var table in RootNode.Tables) { #>
<Package Name="Load_<#=table.Name#>"></Package>

<# } #>
</Packages>

</Biml>

<Biml xmlns="http://schemas.varigence.com/biml.xsd">
<Packages>

<Package Name="Load_Customer"/>
<Package Name="Load_Product"/>
<Package Name="Load_Sales"/>

</Packages>
</Biml>



Biml vs. BimlScript

Automate, control and 
manipulate Biml with C#

Flat XML
"Just text"



Let's generate
a lot of packages!



Don't Repeat Yourself



Move common code to separate files

Centralize and reuse in many projects

Update code once for all projects

1. Include files

2. CallBimlScript with parameters

3. Tiered Biml files

Don't Repeat Yourself



BimlExpress vs. BimlOnline

"Black Box"

Only SSIS packages visible

Visual Editors

All in-memory objects visible



Include Files

Include common code in multiple files and projects

Can include many file types:  .biml  .txt  .sql  .cs

Use the include directive

<#@ include file="CommonCode.biml" #>
The directive will be replaced by the included file

Include pulls code from the included file into the main file



Include Files



Include Files



Include Files



CallBimlScript with Parameters

Works like a parameterized include

File to be called (callee) specifies input parameters it accepts

<#@ property name="Table" type="AstTableNode" #>
File that calls (caller) passes input parameters

<#=CallBimlScript("CommonCode.biml", Table)#>

CallBimlScript pushes parameters from the caller to the callee, and the 
callee returns code



CallBimlScript with Parameters



CallBimlScript with Parameters



CallBimlScript with Parameters



CallBimlScript with Parameters



CallBimlScript with Parameters



Tiered Biml Files

Use the template directive:

<#@ template tier="1" #>

Create objects in-memory from lowest to highest tier to:

• Solve logical dependencies

• Simulate manual workflows

In-memory objects are added to the RootNode

Get objects from RootNode in higher tiers



So how does this actually work?



Get things done

Start small

Start simple

Start with ugly code

Keep going

Expand

Improve

Deliver often



Biml on Monday...

…BimlBreak the rest of the week :)



@cathrinew

cathrinewilhelmsen.net

linkedin.com/in/cathrinewilhelmsen

contact@cathrinewilhelmsen.net

slideshare.net/cathrinewilhelmsen

Biml resources and references:

cathrinewilhelmsen.net/biml


