
@simonmunro

Improving Database Performance

by Removing the Database

Simon Munro

@simonmunro

This is not

about NoSQL

For NoSQL, watch the video
from SQLBits Goes West

It is about why

NoSQL won’t die

@simonmunro

Everything Else

Data Growth

Isn’t it a great time to be a data dude?

@simonmunro

Information is power

Information is on the

increase

We administer the

information

We have the power!

@simonmunro

So why are we so stressed?

@simonmunro

We need to handle increasing

demands

Data Volumes

Transactional Volumes

User Volumes

Time to Market

Responsiveness

@simonmunro

With better levels of service

Availability

Reliability

Security

Functionality

Performance

(Yeah right… and with the same fake smiles)

@simonmunro

Rising Costs

Operational Costs

Licensing Costs
Specialised Hardware

Vendor Lock-in

@simonmunro

It all takes more effort

Operational Effort

Design Effort

Collaboration Effort

Procurement

Setup

Migration

Decommissioning

@simonmunro

But we have to lower costs

Recession Impact

Focus on Efficiency

Staff cuts

Marginal business cases

Infrequent Upgrades

@simonmunro

What can change?

Networking Topologies?

Hardware Infrastructure?

Storage?

Database Platforms?

Application Architectures?

Demands?

Requirements?

@simonmunro

Do we want it to change?

It seems to work

It is familiar

We have the skills

Risk is low

We have the infrastructure

Does it really work?

@simonmunro

Designed for Purpose

@simonmunro

Misused Designs

@simonmunro

SQL as a Good Design

De-facto data storage mechanism

(Fairly) well understood patterns

Database structures

Querying

Close to classic relational model

Optimised embedded languages

@simonmunro

SQL as Misused Design

API is far to open

‘Post relational’ datatypes

Suboptimal for some
domains

@simonmunro

Works for me

Why?

That is what is was designed to do

It’s always been that way

Have you checked your assumptions?

SQL is simply fantastic!

Have you looked at alternatives?

@simonmunro

SQL Patterns have become data

management patterns

Backup

Query

Security

ACID

Application development

Data models

THIS is how we work with data!

@simonmunro

Scalability

and expensive

It is hard

and unfamiliar

and those are just the

people problems!

@simonmunro

Scalability and NoSQL

Lack of SQL scalability out is the popular NoSQL argument

Actually, most NoSQL databases do not scale out either
jamesgolick.com

CouchDB
Redis
Tokyo cabinet
MemcacheDB
Berkeley DB

Cassandra
Riak
Voldemort

@simonmunro

Scalability is more than an engineering

problem

Operational processes

Maintenance

Skills

Partnerships

Legal

@simonmunro

@simonmunro

The core flaw in SQL oriented design

MSDN

“The log records associated with
the transaction (and all previous
log records) must be written to
stable storage. The transaction is
not considered committed until
the log records are correctly
flushed to stable media. (Log is
hardened.)”

http://technet.microsoft.com/en-
us/library/cc966500.aspx

@simonmunro

Stack of Turtles

Processor

Memory

Disk Controller

Disk

@simonmunro

More turtles!

Processor

Memory

San Controller

Network

Switch

SAN Controller

RAID Controller

SAN

DiskIs our performance

bottleneck based on this?

@simonmunro

Storage Gets Better

Tape is dead

Disk is tape

Flash is disk

SSDs to the rescue!

What if we kept

everything in memory?

Memory is cheap

@simonmunro

Database Ivory Towers

That Piss Me Off

@simonmunro

All data should be in the database

The Culture

Q: How long do you need to
keep this data?
A: 5 years

Original atomic records need to
be stored for future analysis

Keeping it in SQL is best so
that it can be queried

@simonmunro

All data should be in the database

The Reality

The business value of data
is misunderstood

The cost of data retention is hidden

Users cannot query data

A lot of data is not in the
database anyway

@simonmunro

Single Version of the Truth
(One fact, one place, once)

The Culture

Master Data Management

Normalisation

Only editable in this database

Integration is tedious

Removal of duplicates

@simonmunro

Single Version of the Truth
(One fact, one place, once)

The Reality

A complete myth

Data always lands up everywhere

System integration duplicates data

There are a lot of spreadsheets

MDM effort is high

Data is inherently temporal

@simonmunro

All processing should be done

in the batch run

The Culture

Single database

SQL Database as a source for all data

Aggregation load is to high
for transactional systems

It is optimal and fair for
all departments

@simonmunro

All processing should be done

in the batch run

The Reality

Batches always tend toward using
up all available time

Batch code is the worst

Batch failures are a source of
Panic, risk and stress

Operational costs for batch
runs are high

@simonmunro

Queryability

The Culture

All fields are queryable

User demand... apparently

This is what the relational
database is for

@simonmunro

Queryability

The Reality

Performance issues limit
searches to key fields

Other structures are created to
make querying easier

Rows, columns and tables are
an abstraction anyway

@simonmunro

Required by Auditors

The Culture

“We need an audit trail”

“Audit requires that we…”

@simonmunro

Required by Auditors

The Reality

Real life auditors are seldom
making requests

What are auditors doing specifying
IT architectures anyway?

Auditors are change averse

@simonmunro

Required by Regulations

The Culture

“We can’t do that because of regulations”

“We do it like this for regulatory reasons”

@simonmunro

Required by Regulations

The Reality

Regulations are difficult to understand

Regulations are full of legalese
and contradictions

Most regulatory requirements are
based on myths

@simonmunro

Consistency

The Culture

Every database operation needs
to be within a transactional context

We have to ensure that in the
event of a failure that data is correct

Data has to be in a consistent state
before it can be used

All clients executing a simultaneous
query should get the same result

@simonmunro

Consistency

The Reality

Consistency is impossible in a
Distributed environment

The Internet is a distributed
environment

Given the choice, business
would probably spend their
money elsewhere

Even the most consistent data
may not reflect reality

@simonmunro

@simonmunro

Service Interface

In memory data

Hosted Service

Clients

Message Bus

Can we just store data in memory?

@simonmunro

What are the patterns?

We already have them

Mainframes, Swift, Reuters, Trading

Knowledge is hidden or rusty

Diverted to SOA for a while

Already being used without
DBA knowing

Being revived by the cloud

@simonmunro

The Influence of the Cloud

Someone else can deal with
the stack of turtles

Cannot make assumptions
about availability of a
specific process

Applications are failure aware

No control over underlying
hardware

@simonmunro

SQL Removal Techniques

Change your approach to
dealing with data

Change your application
architectures

Change how business treats data

Work with other disciplines

(e.g. developers and compliance)

@simonmunro

Changing Approach to Data

Cache

Read-only data stores

Specialised Data Stores

Main Memory Databases

Pre-emptive archiving

@simonmunro

Changing Approach to Application

Architectures

Message Orientation

Eventual Consistency

Store and process data as
Close to source as possible

Design for service
degradation

Apology based computing

@simonmunro

An Example : Changing Batch Jobs

The Scenario:

Users require access to
Summaries of a large
transactional database

The transactional database
is under load so summaries
are run in the overnight batch
job

@simonmunro

The Result

Message Bus

Reporting Database Transaction Database

Workflow
Engine

Reliable
Messaging

Transaction Source

Occasional Refresh

@simonmunro

Resistance to Change

Incumbent Investment

Risk of Failure

Fear of Failure

Jobs Protection

Egos

@simonmunro

Vendor Interests

Q3 2010
New software licences US$1.7B
Updates and product support US$3.2B

2009 Annual Report
Revenue US$ 58B
Client (Windows) US$ 14.7B
Server and Tools US$ 14.1B

@simonmunro

It’s Not Easy

High Engineering Cost

Lack of Design Patterns

Lack of Experience

Risk of Poor Implementation

Sponsor Support

No Big Vendor

@simonmunro

Things we
need to do
with data

Things
that we do
with SQL

Things
that SQL is

good at

Keep this

Focus here

Change This

Who Cares?

@simonmunro

Get involved in the debate

Close the gap to ‘them’

Advance the state of the art

Be less restrictive

Embrace change

Understand the business needs

The Data API is changing

Data demands are exploding

We are wasting effort, money and sanity

SQL doesn’t do everything

Alternatives can make a big difference to solutions

Its time for database professionals to take back the
database and stop people pissing all over our domain

@simonmunro

What kind of trusted advisor are you?

@simonmunro

Fill in feedback

Visit the sponsors please

Look for the video uploads

Slides (and trump cards) on
simonmunro.com and SQLBits soon

