
Azure SQL DB
Running a cloud database service at scale

Nigel Ellis

Distinguished Engineer

Data Platform Group (aka. SQL)

nigele@microsoft.com

July 2014

Who am I?

Distinguished Engineer in SQL team

21 years at Microsoft (all in Databases)

Worked in some form on all versions of SQL from SQL 6.5

Last 9 years mainly focused on Cloud services:

‐ Started in 2006 with internal focused service (CloudDB)

‐ My primary engineering focus is Azure SQL DB (today’s talk)

I enjoy listening and learning from customers

This is my first time at SQL Bits

‐ Not my first time in the UK – born in Lancashire

Data Platform Continuum

Requirements for the Data Tier

Highly available database are required to support:
• Mission critical applications 7x24x365

• SaaS services with hundreds or thousands of hosted tenants

Must never lose data even in disaster situations

Must protect data from human errors and accidents

Must ensure fair and reasonable resource allocation
• Allocation across tenant databases must ensure predictable performance

Must be cost competitive / affordable

AlwaysOn for HA and GEO
Cluster needs quorum to avoid split brain

• The number of voting members determines the cluster
tolerance to failures

• Can use node majority for odd # of members or majority
with ties (node or file share) for even #

Cluster members must be on same Windows domain

Readable secondaries usable for read-only workloads

SQL backup/restore for redundancy
Backup scheduling

Backup storage (where?) and retention polices

Governance for Performance
EE only feature setting limits on IO, memory and CPU

Requires workload classifier (TSQL function)

Sync Log

Synchronization
Async Log

Synchronization

A

A

A

A

Backups

AlwaysOn-SRV2AlwaysOn-SRV4

Reports

AlwaysOn-SRV5

AlwaysOn-SRV3

… now take this pattern and scale to 50K… 100K, 1M DBs …

Don’t forget about tenant allocation, upgrades/patching,

billing, multiple service tiers (SaaS), load-balancing, etc.

SQL Database Service Overview

A relational database-as-a-service, fully managed by Microsoft

For cloud-designed apps when near-zero administration and enterprise-grade capabilities are key

Perfect for cloud architects and developers looking for programmatic DBA-like functionality

Where is it offered?

United States

US East (Virginia)

US West (California)

US North Central (Illinois)

US South Central (Texas)

Europe
Europe North (Ireland)

Europe West (Netherlands)

Asia Pacific
Asia Pacific East (Hong Kong)

Asia Pacific Southeast (Singapore)

Japan
Japan East (Saitama Prefecture)

Japan West (Osaka Prefecture)

Brazil Brazil South (Sao Paulo State)

China
Beijing

Shanghai

Building Software-as-a-Service Apps

9

Key Benefits

Customer DB isolation

Near-zero administration

Elastic scale as customers

grow

“Azure gives us the ability to scale up to

thousands of databases as needed…

Today, more than 50 percent of new

product registrations at MYOB are for our

cloud accounting solutions”

Simon Raik-Allen, MYOB

Cost-effective
scale, 10s of
thousands DBs

Accelerated
testing &
deployment

Mission-
critical
performance

Azure SQL Database

Azure SQL Database

Flavorus deployed a high volume ticketing app on Microsoft Azure and

SQL Database for fast and reliable access to customers around the world

Azure SQL Database Service Tiers (in preview)

App Scalability & Performance

Business Continuity

Developer Efficiency

Massive scale & performance

Business continuity & data protection

Familiar management tools & APIs, Self-managed

*SLAs will take effect at time of GA, Azure previews are subject to different service terms, as set forth in preview supplemental terms.

**Not all restore & disaster recovery features are available today, visit the disaster recovery documentation page to learn more.

http://www.windowsazure.com/en-us/support/legal/preview-terms-of-use/
http://go.microsoft.com/fwlink/?LinkId=394072

Database High Availability

Reads are completed at the primary

Writes are replicated to secondaries

DB

Single Logical

Database

• Majority quorum up to 4 replicas

• Transparent automatic failover

• Uptime SLA of 99.95%

• Zero user or admin config

P

SS

WriteWrite

AckAck

Read

WriteAck

P

S

S

*Basic, Standard and Premium at GA

Active Geo-Replication

Self-service activation in Premium

Create up to 4 readable secondaries

Replicate to any Azure region (selectable)

Automatic data replication, asynchronous

REST API, PowerShell or Azure Portal

RTO<1h, RPO<5m, you choose when to failover

Mission-critical business continuity on your terms, via. programmatic APIs

Up to 4 secondary
locations

Self-service restore

We take automatic data backups and

transactional logs every 5 min (RTO)

Backups pushed to Azure Storage and

are geo-replicated (restore anywhere)

Recovery option creates a side-by-

side database copy, non-disruptive

REST API, PowerShell or Azure Portal

Backups retention policy:

• Basic, last known state up to 24 hrs

• Standard, up to 7 days

• Premium, up to 35 days

Programmatic “oops recovery” of data deletion or alteration

Geo- replicated

Restore from backup

SQL Database

Backups

sabcp01bl21

Azure Storage

sabcp01bl21

Internals of Azure SQL DB
Engineering Requirements and Implementation

Service Topology

Service deployed by region

Each region has multiple clusters

Each cluster hosts Azure Compute

Azure DB runs as Compute tenant

Typical cluster 10 – 20 racks

300 – 800 servers

13 regions worldwide, many
clusters per-region

Security
Boundary

Azure DB Fabric

SQL

TDS

Gateway

Application

Gateway VIP

Gateway

SQL

TDS

Internet
Azure Cloud

TDS

Replication

UCS

FD1
FDnFDn-1

Connection & Security Model

Service exposes concept of logical server
• Unit of co-location pinned to Azure region
• Hosts 1 or more logical databases

Clients connect directly to a database
• Large set of SQL supported within database (not instance) boundary
• Cannot hop across DBs as they are hosted on different backend servers

Uses regular SQL security model
• Authenticate logins, map to users and roles
• Authorize users and roles to SQL objects

Standard SQL Auth logins
• Username + password
• Work in progress to deliver authentication with integrated security

Connection tied to target database; cannot “hop” across DBs

Components

Databases replicated with
3+ copies

Distributed across cluster of
machines

Each machine hosts SQL
Server and other processes

“Master” cluster controls
location and provides
authoritative location
information in GPM

Replicas move based on
failures, load changes, and
cluster age

SQL Server

P
S
S
S

Replication
Agent

Local
Partition

Mgr

Data Node 100

Master Node (Primary Master)

Primary SecondarySecondary

Fabric

Ring Topology

Failure Detector

PM Location Resolution

Reconfiguration Agent

Fabric
Leader
Elector

Partition Manager

Placement
Advisor

SQL Server

Global
Partition

Mgr

Fabric

Data Node
104

P
S
S
P
S

Data Node
105

P
S
S
S
S

Data Node
103

P
S
S
S
P

Data Node
102

P
S
S
P
S

Data Node
101

P
S
S
P
S

Load Balancer

Embrace Failure: MTTR trumps MTBF

At scale the hardware failure is a routine event
• We can’t blindly trust hardware and most software (including our own )
• Trust but verify – example: system enforces checksums for disk & network IO
• System must protect against planned and unplanned failures

Failure modes - hard to predict gray zone failures
• Clean failure is easy to handle
• Limping along HW or a half hung process is much harder to detect
• We iterate and improve based on data (telemetry is critical)

Trade-offs between fail-fast and stay up by all means
• Not much time to wait in bad state to meet a 99.95 SLA
• Graceful vs. hard shutdown
• Always tradeoff data durability over availability, but have to meet promised RPO/RTO

Implement heuristic based repair cycle:
• Restart Process  Reboot OS  reimage OS  RMA

Dealing with Commodity Hardware

SATA drives
• On-disk cache and lack of true "write through" results in Write Ahead Logging

violations
• Force flush disk cache but causes performance degradation

• Disk failures happen daily, fail-fast on those
• Bit-flips (Enabled page checksums to catch)
• Drives just disappear (sometimes fixed with reboot, sometimes reseating of drives)
• IOs are misdirected

SSD drives
• Becoming more mainstream – super fast! Need to govern IO rate…
• Beware of wear leveling (SSDs have limited life)

Faulty NIC
• Encountered message corruption - enabled message signing and checksums on

replication protocols (UCS)

Data Durability & Consistency

Data replicated within a replica set for durability and high availability

All clients need to see the same linearized order of read and write
operations

Replica set is dynamically reconfigured to account for member arrivals
and departures

Read-write quorums are supported and are dynamically adjusted based
on replica set size

• We use a majority write quorum (
𝑛

2
+ 1) and a min-read quorum of 2

22

Replication

Reads are completed
at the primary replica

Writes are replicated to
the write quorum of secondaries

Each transaction has a commit
sequence number (epoch, num)

P

S

S

S

S
WriteWrite

WriteWrite

AckAck
Ack

Ack

Read
Value

Write

Ack

Reconfiguration (on change)

Types of reconfiguration
• Primary failover

• Removing a failed secondary

• Adding recovered replica

• Building a new secondary

Assumes
• Failure detector

• Leader election

P

S

S

S

S

S

Safe in the presence of
cascading failures

B P

X
Failed

X
Failed

Ring Geometry

Every node is assigned a unique ID

(typically a 128-bit or 160-bit number)

Active member nodes reliably form and

maintain themselves in an ordered double-

linked structure

The active nodes with the highest ID and

lowest ID link to each other forming a ring

Rings are bootstrapped by a seed node

25

0

30

50

17

Failure Detection

Nodes establish leases and
exchange ‘ping’ traffic to
ensure liveness

Nodes can communicate
directly (point-to-point) or
via. other neighbors

Communication protocol
forms basis of failure
detection

Can detect network
partitioning and other failures

Time = t1

83
76 50

46

64

New Node arrived61

Time = t2

83

61
50

46
Failures Detected

Ring reconfigured

83
76

64
50

46

Time = t0

Node failed

Deployment and Servicing

Azure SQL DB layers over Azure Compute (built using worker roles)

OS imaged with “services” formed from SQL Server and other roles

These services built with “xcopy” installation model
• No use of “setup” – all config read from disk

• Enables fast upgrade using side-by-side staging + switch

Upgrade is orchestrated to ensure high availability and data durability
• 4 types: hostOS, guestOS, service bits and service configuration

• Can be combined to reduce deployment time and impact

Two phase rollouts used for data format or network protocol changes

27

Upgrade Process
1. Takes down the first
upgrade domain and updates
software. This can only affect
one replica.

Upgrade
Domain 1

Upgrade
Domain 2

Upgrade
Domain 3

Upgrade
Domain 4

Upgrade
Domain 5

Deployment Rollout in Action

Racks equal to Fault Domain.
Upgrade Domains span all
Fault Domains.

Placement Process
1. Pick any node for first
replica. That results in that
Fault Domain and Upgrade
Domain being unavailable for
other replicas.

1
2. Pick the second replica
from any node not already
disqualified. This excludes
another FD and UD.

2

3. Repeat until you have
placed the required number
of replicas.

3

2. First UD is brought back
up and waits for the
machines to come back
healthy. Then second UD is
shut down.

3. Repeat until all UDs have
been upgraded.

Note: Upgrades can withstand a simultaneous fault domain
failure with high enough spare capacity and replica count

Monitoring

Reboot/Reimage/RMA cycle for machines health/repair

All driven via. comprehensive monitoring
• Outside-in (Azure Region <> Azure Region + others)
• Inside-out (Azure Region self-monitoring)

Additional monitoring for SQL Azure services (mostly SQL engine)
• Examples: Ability to connect, Memory leaks/hung workers and Database corruption
• Trace and performance stats captured (SQL trace and DMV)
• Traces kept locally and also pushed to global region store

Monitoring drives Alerting system
• Goal is for the system to always self-heal no human intervention
• We strive for 8x5 “lights out” operation (zero drama and restful sleep)
• If healing fails, on-call team automatically paged for mitigation process

All incidents are driven via. comprehensive post-mortem system
• Focus on alerting gaps and failures in people, process and technology (see The 5 Whys)

http://en.wikipedia.org/wiki/5_Whys

Telemetry is king

We live and breathe data to operate the service
• At the scale we operate we cannot think about individual servers or racks
• Now getting to a point where we no longer think about single clusters
• All our actions decided based on data - a data driven culture

Telemetry on most “managed” aspects fuels our running the service
• Login availability dips raise incidents and investigations
• Databases not getting enough resources get attention
• Crashes/dumps automatically file bugs
• SQL errors give us deep insight into application and system issues

Anomaly detection & machine learning to find unexpected deviations
• Several major incidents have been averted based on anomaly detection (failure)

How we use and run our pipelines deserves a whole other talk 
• Make extensive use of HD Insight (HADOOP in Azure) and SQL Server
• Currently process ~200TB of telemetry per day for all Azure regions
• Represents a HUGE learning curve – you’d think SQL Server engineers are experts at running

SQL. We are getting there 

Hosting Choices for SQL Customers

Data Platform Continuum

Cloud 1st but not Cloud Only

Using Azure SQL DB to improve core SQL Server (features/cadence)

Many interesting (and compelling) on-premise <> Cloud scenarios

