
SQLBits VII - Telford

Effective Index Partitioning
& Compression Strategies

Neil Hambly
Founder | SQLnextSteps Limited

Who Am I?

• SQLnextSteps Limited Neil.Hambly@Hotmail.co.uk

• DBA – 15+ Years, SQL Server 6.5 - 2014
• Held # of DB roles @ many leading organizations
• Regular International PASS Presenter @

SQL Conferences, User-Groups & Webinars
100+ presentations in last 4 years

• SQL London PASS Chapter Leader, UK Events Organizer
• Regular @ UK & International community events
• Twitter: @Neil_Hambly

Contributing Author

7/21/2014 2

mailto:Neil.Hambly@Hotmail.co.uk

Agenda

7/21/2014 3

 Talk about the 2 features – Compression & Partitioning
 Using Data Compression in SQL Server 2005+.

 Compression
 Editions, Data types
 Vardecimal Compression (2005 SP2)
 Page | Row Compression (2008+)
 Unicode Compression
 Estimate space & resources

 Partitioning
 Combining with other features
 Demo’s

 Partition-Info Script
 Finding objects for compression

 Q&A + Further links

DataTypes

4

Data Compression was introduced in SQL 2005 (SP2) via vardecimal storage
This was superseded in SQL Server in 2008 Version (Row & Page level)

Compression feature is only available in Enterprise and Developer SKU’s

Note: NULL and 0 values across all data types are optimized to take 0 bytes in addition to 4 bits/per Column

Yes – depends on data No or little benefit (Normally)

bit / smallint / int / bigint tinyint / uniqueidentifier

decimal / numeric

datetime / datetime2 / datetimeoffset smalldatetime / date / time

char / nchar / nvarchar varchar / text / ntext / image

binary / timestamp / Rowversion varbinary

money / smallmoney

float / real

sql_variant / FileStream

cursor / table / xml

Data Type / benefits with Data Compression

The vardecimal works the same way as the varchar works
for efficiently storing alphanumeric data.

SQL 2005 SP2 (Vardecimal)

HOW TO TURN ON THE VARDECIMAL OPTION

Step 1:
exec sp_db_vardecimal_storage_format '<dbname>', 'ON'
This option will enable the vardecimal storage on the specified database.

Step 2:
exec sp_tableoption '<table>', 'vardecimal storage format', 1
This option will turn on the vardecimal storage for the existing table.

HOW TO ESTIMATE WHETHER IT IS WORTH TURNING
ON THIS OPTION
sys.sp_estimated_rowsize_reduction_for_vardecimal '<table>'

Column
precision

Original fixed
decimal size
(bytes)

Maximum
vardecimal
data area
(bytes)

Overhead
to store
offset
(bytes)

Maximum
vardecimal
storage used
(bytes)

1-3 5 3 2 5

4-6 5 4 2 6

7-9 5 5 2 7

10-12 9 6 2 8

13-15 9 8 2 10

16-18 9 9 2 11

19 9 10 2 12

20-21 13 10 2 12

22-24 13 11 2 13

25-27 13 13 2 15

28 13 14 2 16

29-30 17 14 2 16

31-33 17 15 2 17

34-36 17 16 2 18

37-38 17 18 2 20

Page & Row Level Compression

Since 2008 version, we have new Compression algorithms available

Compressing the leaf level of tables and indexes with page compression consists of
three operations, these are done in the following order:

1. Row compression
2. Prefix compression
3. Dictionary compression

Note: When using page compression, the non–leaf-level pages of indexes are only row compressed

Row Compression Prefix Compression Dictionary Compression

Page Compression

Unicode Compression

Locale Compression %

English 50%

German 50%

Hindi 50%

Turkish 48%

Vietnamese 39%

Japanese 15%

Space savings that can be achieved for different locales (15-50%)

Standard Compression Scheme for Unicode (SCSU)
SCSU algorithm to compress Unicode values that
are stored in row or page compressed objects

Unicode compression supports the fixed-length
nchar(n) and nvarchar(n) data types.

Data values that are stored off row or in
nvarchar(max) columns are not compressed

SCSU can also switch to UTF-16 internally to handle non-alphabetic languages

;WITH CTE_Partitions
([ObjectID],[Table_Name],[Index_Name],[Partition],[Index_ID],[Index_Type],[Percent_Update],[Percent_Scan]
,[Compression_Level],[IN_ROW_DATA],[ROW_OVERFLOW_DATA],[LOB_DATA]
) AS
(SELECT
o.object_id AS [Objectid] ,o.name AS [Table_Name] ,i.name AS [Index_Name],ios.partition_number AS [Partition]

,i.index_id AS [Index_ID],i.type_desc AS [Index_Type],
ios.leaf_update_count * 100.0 / (ios.range_scan_count + ios.leaf_insert_count + ios.leaf_delete_count
+ ios.leaf_update_count + ios.leaf_page_merge_count + ios.singleton_lookup_count) AS [Percent_Update]
,ios.range_scan_count* 100.0 / (ios.range_scan_count + ios.leaf_insert_count + ios.leaf_delete_count
+ ios.leaf_update_count + ios.leaf_page_merge_count + ios.singleton_lookup_count) AS [Percent_Scan]
,p.data_compression_desc AS [Compression_Level] ,ps.in_row_used_page_count AS [IN_ROW_DATA]
,ps.row_overflow_used_page_count AS [ROW_OVERFLOW_DATA] ,ps.lob_used_page_count AS [LOB_DATA]
FROM sys.dm_db_partition_stats ps
JOIN sys.partitions p ON ps.partition_id= p.partition_id
JOIN sys.indexes i ON p.index_id = i.index_id AND p.object_id = i.object_id
JOIN sys.dm_db_index_operational_stats(db_id(),NULL, NULL, NULL) ios ON i.object_id = ios.object_id
AND i.index_id = ios.index_id
JOIN sys.objects o ON o.object_id= ios.object_id
WHERE(ios.range_scan_count + ios.leaf_insert_count + ios.leaf_delete_count

+ ios.leaf_update_count + ios.leaf_page_merge_count + ios.singleton_lookup_count)!= 0
AND objectproperty(i.object_id,'IsUserTable')= 1
)
Select * From CTE_Partitions
ORDER BY [IN_ROW_DATA] DESC,[Index_Name]ASC, [Percent_Update]ASC

Finding objects to Compress

Estimate Space for data in Compression states

To determine space for a each compression version we can use the system
Procedure sp_estimate_data_compression_savings

Example

EXEC sp_estimate_data_compression_savings

‘Sales', -- [@schema_name =] 'schema_name'

‘SalesOrderDetailLoad', -- [@object_name =] 'object_name'

NULL, -- [@index_id =] index_id

NULL, -- [@partition_number =] partition_number

,'ROW' -- [@data_compression =] 'data_compression'

;

Tip: you can use sp_estimate_data_compression_savings to gauge defragmentation

savings, just run with same value for @data_compression as exists already

Workspace I/O CPU

TEMPDB UserDB UserDB Tran
Log

TEMPDB UserDB UserDB Tran
Log

OFFLINE with BULK_LOGGED or SIMPLE Recovery Model

Rebuild 0 X ~0 0 X+2X ~0 C

Compress 0 P ~0 0 X+2P ~0 1.5C to 5C

OFFLINE with FULL Recovery Model

Rebuild 0 X X 0 X+X X ~C

Compress 0 P P 0 X+P P 1.5C to 5C

ONLINE with FULL Recovery Model

Rebuild M+Y X+Y 2X+Y M+4Y X+X+Y 2X+Y ~2C

Compress M+Y P+Y 2P+Y M+4Y X+P+Y 2P+Y 3C to 10C

Guide for Resource Requirements performing Data Compression
Table shows a summary of workspace, CPU, and I/O requirements for compressing a clustered index as compared to

rebuilding the same uncompressed index. Measurements used:

• X = number of pages before compression (or rebuild)

• P = number of pages after compression (P < X)

• Y = number of new or updated pages (by a concurrent application, applies only to the ONLINE case)

• M = size of the mapping index (estimate based on guidelines in the TEMPDB Capacity Planning white paper)

• C = the CPU time taken to rebuild the uncompressed index

Workspace, CPU, and I/O summary for compressing a clustered index

Partitioning….
Each partition can be compressed @ different level if desired

An example Table with partition on Date @ monthly boundaries
A year consists of 12 partitions (EG Jan 2012 – Dec 2012)

Alter Table dbo.OurTableName

Rebuild Partition = All

With

(

Data_Compression = Page On Partitions(1 to 8)

, Data_Compression = Row On Partitions(9 to 11)

, Data_Compression = None On Partitions(12)

);

With the above the most recent month is NO-compression

3 months before that are compressed with ROW-compression

The 1st 8 months before those have been PAGE-compression

Using a ‘Sliding Window’ strategy, so as Data is Aged.. It has increased compression level

it less frequently accessed, so a higher compression CPU can be allowed to save more space

Partitioning Actions....

Splitting a range
When partitions are split by using the ALTER PARTITION statement, both
partitions inherit the data compression attribute of the original partition.

Merging a range
When two partitions are merged, the resultant partition inherits the data
compression attribute of the destination partition.

Switching partitions
To switch a partition, the data compression property of the partition must
match the compression property of the table.

Some other Thoughts….

• Compression on a per partition level
• Rebuild each partition separately {save space}
• Help keep fragmentation to min level {more granular option}
• FileGroup backups (Differential FileGroup backups)

• Determine an effective fill-factors
• Based it on the KeySize
• Use Compression levels to create better page density
• Based on the activity levels {Non|Row|Page}

• Consider adding Filtered Multi-column stats
• <user created Statistics> for each partition
• Use the PF to ensure the Filter is just for 1 partition

• TEST…Test… and then Test again

Demos….

• Some think it is now time for our Demo’s

• Here is one Partitioning/Compression strategy I prepared
earlier this week

How Compression Affects Other SQL Server Components

How Compression Affects Other SQL Server Components
Bulk import and export operations
When data is exported, even in native format, the data is output in the uncompressed row
format. This can cause the size of exported data file to be significantly larger than the source
data.

When data is imported, if the target table has been enabled for compression, the data is
converted by the storage engine into compressed row format. This can cause increased CPU
usage compared to when data is imported into an uncompressed table.

When data is bulk imported into a heap with page compression, the bulk import operation
will try to compress the data with page compression when the data is inserted.

Compression does not affect backup and restore.
Compression does not affect log shipping.
Enabling compression can cause query plans to change
Because the data is stored using a different number of pages and number of rows per page.

Data compression is supported by SSMS through the Data Compression Wizard.

Further Links to Resources on Data Compression in SQL Server

Whitepapers
Data Compression: Strategy, Capacity Planning and Best Practices (SQL 2008)
http://msdn.microsoft.com/en-us/library/dd894051.aspx
Vardecimal Whitepaper (SQL2005)
http://download.microsoft.com/download/2/7/c/27cd7357-2649-4035-84af-
e9c47df4329c/vardecimalstorage.docx
SQL Server I/O Reliability Program
http://www.microsoft.com/sqlserver/en/us/solutions-technologies/mission-critical-operations/high-
availability.aspx

WIKI
http://en.wikipedia.org/wiki/Standard_Compression_Scheme_for_Unicode

Blogs
MS SQL Server Storage Engine
http://blogs.msdn.com/b/sqlserverstorageengine/archive/tags/data+compression/

KB Articles
Microsoft SQL Server Database Engine Input/Output Requirements KB 967576

Confio
http://www.confio.com/sql-server-performance-resources/primary-key-vs-clustered-index/

http://msdn.microsoft.com/en-us/library/dd894051.aspx
http://download.microsoft.com/download/2/7/c/27cd7357-2649-4035-84af-e9c47df4329c/vardecimalstorage.docx
http://www.microsoft.com/sqlserver/en/us/solutions-technologies/mission-critical-operations/high-availability.aspx
http://en.wikipedia.org/wiki/Standard_Compression_Scheme_for_Unicode
http://blogs.msdn.com/b/sqlserverstorageengine/archive/tags/data+compression/
http://www.confio.com/sql-server-performance-resources/primary-key-vs-clustered-index/

THE CRAIC

SQL SATURDAY #310 DUBLIN

STAY
Hilton Hotel Charlemont –
rooms from €159 B&B

REGISTER
http://www.sqlsaturday.c
om/310/

LEARN FROM INTERNATIONAL EXPERTS

- Sept 19th: 6 x Precons
- Sept 20th: 6 x Tracks – BI,DEV,DBA,2014,Cloud

20th
Sept

DUBLIN
PARTY
After party and
entertainment during the
event

http://www.sqlsaturday.com/229/

