Latches, Spinlocks, and Lock Free
Data Structures

Bring your SQL Server installations to a new level of excellence!

And

About me

« CEO & Founder SQLpassion

* International Speaker, Blogger, Author
« SQL Server 2008 MCM

« ,Pro SQL Server 2008 Service Broker*

‘. b, “ ‘s

« Twitter: @Aschenbrenner Pro
SQL Server 2008

« SQLpassion Academy
— http://www.SQLpassion.at/academy
— Free Newsletter, Training Videos

Service Broker

Klaus Aschenbrenner

kindle edition |

Bring your SQL Server installations to a new level of excellence! vww.SQLpassion.at

If you are latched or spinlocked by the
session, there is always a way to back-off:
apply a lock-free operation!

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

 Latches
e Spinlocks
 Lock Free Data Structures

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

 Latches
e Spinlocks
 Lock Free Data Structures

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

Used for Thread
Synchronization

4

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

Controls... Transactions Threads

Protects... Database content In-Memory Data Structures

During... Entire transaction Critical section

Modes... Shared, Update, Exclusive, Keep, Shared, Update,
Intention Exclusive, Destroy

Deadlock... Detection & Resolution Avoidance through careful

coding techniques
Kept in... Lock Manager’s Hashtable Protected Data Structure

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

|O Latches

/

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

 Protect all kinds of pages when they are accessed from
the Buffer Pool

— Data Pages/Index Pages
— PFS/ISGAM/GAM Pages
— |AM Pages

« PAGELATCH *
» Accessible through sys.dm_os wait_stats

EH Results @ Mmagesl
wait_type waiting_tasks_count wait_time_ms max_wait_time_ms signal_wait_time_ms
4 LATCH_UP 0 0 0 0
5 LATCH_EX 4 1 0 0
6 LATCH DT 0 0 0 0
p—— 7
7 PAGELATCH_NL i0 0 0 0
8 PAGELATCH_KP 0 0 0 0
9 PAGELATCH_SH 4 0 0 0
10 § PAGELATCH_UP 0 0 0 0
11§ PAGELATCH_EX 9 0 0 0
12§ PAGELATCH_DT 0 0 0 0
-
13 PAGEIOLATCH_NL 0 0 0 0
14 PAGFIOIATCH KP 0 0 0 0

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

 Subset of BUF Latches
« Used when outstanding I/O operations are done against
pages in the Buffer Pool
— Disk to Memory Transfers (Reading)
— Memory to Disk Transfers (Writing)
« SQL Server is waiting on the 1/O subsystem
° PAGEIOLATCH_* 3 Resuis [[T3 Messages|
wait_type waiting_tasks_count wait_time_ms max_wait_time_ms signal_wait_time_ms
1 PAGELATCH_EX 9 0 0 0
12 PAGELATCH DT 0 0 0 0
13 [PAGEIOLATCH_NL 0 0 0 0
14 J| PAGEIOLATCH_KP 0 0 0 0
15 § PAGEIOLATCH_SH 1039 2033 45 30
16 J| PAGEIOLATCH_UP 56 121 30 1
17 § PAGEIOLATCH_EX 85 40 2 0
18 §| PAGEIOLATCH_DT 0 0 0 0
19 . i

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

« Guarantees the consistency of any other in-memory
structures other than Buffer Pool pages

« LATCH *
» Detailed breakdown in sys.dm_os_latch_stats

waiting tasks count wait time ms max wait_time ms

[T — B — R]
o -0 0o
[— BN — B — B — B — |

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

Exploring Latches

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

Last Page Inserts

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

Current Solutions

« Random Clustered Keys
— UNIQUEIDENTIFIER
— Distributes the INSERTSs across the Leaf Level
— Larger Lookup Values in Non-Clustered Indexes...
— Index Fragmentation

» Hash Partitioning
— Distribute INSERTs across different partitions
— Every CPU core has its own partition
— You can’t additionally partition your table...
— Partition Elimination is almost impossible...

* In-Memory OLTP
— SQL Server 2014+

Bring your SQL Server installations to a new level of excellence! ' WWW.SQLpassion.at

Last Page Insert Latch Contention

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

 Latches
« Spinlocks
 Lock Free Data Structures

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

Windows How to
Kernel protect a
Objects Latch?

Query Life
Cycle

(4 \

Latches don’t
scale!

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

* It's a Mutex (Mutual Exclusion)
— No waiting list
— No compatibility matrix
— You hold the spinlock, or not!
« Used to protect “busy” data structures
— Read or written very frequently

— Held for a short amount of time
— E.g. Lock Manager (LOCK_HASH)

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

* Problem
— Tight spinning around a busy data structure

— Short waits are expected!
— Exponential back-off since SQL Server 2008 R2+

¢ Symptoms
— High CPU usage without performing useful work
— High “backoffs” in sys.dm_os_spinlock_stats

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

Lock Hash
Buckets

Lock Resource = Database ID

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

Lock Hash
Buckets

Lock Resource = Database ID

‘1 Access to the Hash Bucket is protected by a spinlock!

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

Lock Hash
Buckets

New user requires the spinlock and a long list traversal!

Lock Resource = Database ID

us

ua

1 Access to the Hash Bucket is protected by a spinlock!

U 10000

Bring your SQL Server installations to a new level of excellence!

www.SQLpassion.at

Debugging Spinlock Contention

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

 Latches
e Spinlocks
 Lock Free Data Structures

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

Non-Blocking Algorithms

“A non-blocking algorithm ensures that threads
competing for a shared resource do not have their
execution indefinitely postponed by mutual exclusion. A
non-blocking algorithm is lock-free if there is guaranteed
system-wide progress regardless of scheduling.”

Source: http://en.wikipedia.org/wiki/Non-blocking algorithm

Bring your SQL Server installations to a new level of excellence! www.SQlpassion.at

int compare_ and swap(int *value,

int temp = *value;

if (*value == expected)

*value = newValue;

return temp;

void Foo () {
do {

while (compare and swap (&lock, UNLOCKED, LOCKED)
; /* Do nothing */

/* Critical section */

val = val + 5;

lock = UNLOCKED;
} while (true);

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

int expected, int newValue) {

1= 0)

int compare_ and swap(int *value, int expected, int newValue) ({

int temp = *value;

if (*value == expected)
*value = newValue;

return temp;

void Foo () {
do {
while (compare and swap (&lock, UNLOCKED, LOCKED) != 0)
; /* Do nothing */

<«—— We want to execute this code in a thread-

safe manner!

/* Critical section */
val = val + 5;

lock = UNLOCKED;
} while (true);

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

int compare_ and swap(int *value, int expected, int newValue) ({

int temp = *value;

if (*value == expected) | Implemented through one atomic
*value = newValue; hardware instruction: CMPXCHG

return temp;

void Foo () {
do {
while (compare and swap (&lock, UNLOCKED, LOCKED) != 0)
; /* Do nothing */

/* Critical section */

val = val + 5;

lock = UNLOCKED;
} while (true);

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

int compare_ and swap(int *value, int expected, int newValue) ({

int temp = *value;

if (*value == expected) | Implemented through one atomic
*value = newValue; hardware instruction: CMPXCHG

return temp;

void Foo () {

do {
while (compare and swap (&lock, UNLOCKED, LOCKED) != 0)
; /* Do nothing */
/* Critical section */ There is a shared
val = val + 5; resource involved!

lock = UNLOCKED;I
} while (true);

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

int compare_ and swap(int *value, int expected, int newValue) ({

int temp = *value;

if (*value == expected) | Implemente

*value = newValue; hardware If one thread holds the

spinlock, and gets
suspended, we get stuck
in the loop!

return temp;

void Foo () {

do {
while (compare and swap (&lock, UNLOCKED, LOCKED) != 0)
; /* Do nothing */
/* Critical section */ There is a shared
val = val + 5; resource involved!

lock = UNLOCKED;I
} while (true);

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

int compare_ and swap(int *value, int expected, int newValue) ({
int temp = *value;

if (*value == expected)
*value = newValue;

return temp;

void Foo () {
do {
val = *addr;
}

while (compare and swap(&addr, val, val + 5) != 0)

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

int compare_ and swap(int *value, int expected, int newValue) ({
int temp = *value;

if (*value == expected)
*value = newValue;

return temp;

void Foo () {

do {
val = *addr;
}

while (compare and swap(&addr, val, val + 5)

0)

We just check if
someone has
modified “addr”
before we make the
atomic addition

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

int compare_ and swap(int *value, int expected, int newValue) ({

int temp = *value;

if (*value == expect There is no shared
resource, no other
thread can block us

anymore!

*value = newVal

return temp;

void Foo () {

do {
val = *addr;
}

while (compare and swap(&addr, val, val + 5)

1= 0)

We just check if
someone has
modified “addr”
before we make the
atomic addition

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

int compare_ and swap(int *value, int expected, int newValue) ({

int temp = *value;

There is no sharer
resource, no ¢
thread can}

if (*value == expect

*value = newVal

In-Memory OLTP installs
page changes in the
mapping table of the Bw-
Tree with this technique

return temp;

void Foo () {
do {
val = *addr;

while (compare and swap(&addr, val, val + 5) != 0)

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

 Latches
e Spinlocks
 Lock Free Data Structures

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

 Date & Location
— QOctober 20 — 23 in London

 Agenda
— How to write high performance T-SQL queries
— Logical & physical query processing
— Execution Plan Troubleshooting
— Applying Indexing Strategies
— Using In-Memory Technologies
 Further information
— http://www.SQL passion.at/academy

Bring your SQL Server installations to a new level of excellence! www.SQLpassion.at

