
Optimizing Temporal Queries

Introduction

• Dejan Sarka
– dsarka@solidq.com,

dsarka@siol.net, @DejanSarka

– Data Scientist

– MCT, SQL Server MVP

– 25+ years of data

modeling, data mining and

data quality

• 12 books, writing more

• ~10 courses

Module Overview

• Classical T-SQL solution

• Relational Interval Tree

• Using Spatial Data for temporal problems

• Can XML data type help?

• Enhanced T-SQL solution

• Enhanced T-SQL solution with the

IntervalCID type

• Optimizing with the unpacked form

• Compact unpacked form

mailto:dsarka@solidq.com
mailto:dsarka@siol.net

Theoretical Background

 James F. Allen: Interval Algebra, "Maintaining knowledge about

temporal intervals". Communications of the ACM 26(11)

pp.832-843, Nov. 1983 (http://goo.gl/X7GrQb)

 Chris J. Date, Hugh Darwen, Nikos Lorentzos: Temporal Data &

Relational Databases, Morgan Kaufmann, Nov. 2002

(http://goo.gl/YsgBxk)

 Hans-Peter Kriegel, Marco Pötke, Thomas Seidl: Managing

Intervals Efficiently in Object-Relational Databases,

Proceedings of the 26th International Conference on Very Large

Databases, Cairo, Egypt, 2000 (http://goo.gl/4mkDEU)

 Laurent Martin: A Static Relational Interval Tree, whitepaper,

Nov. 2011 (http://goo.gl/qjjgMm) and Advanced Interval Queries

with the Static Relational Interval Tree, whitepaper, Jan. 2013

(http://goo.gl/f8X3J4)

SQL Server Solutions

 Dejan Sarka: Inside SQL Server 2008: Transact-SQL

Programming, chapter 12, Temporal Support in the Relational

Model, Microsoft Press, Oct. 2009 (http://goo.gl/5TShFO)

 Itzik Ben-Gan: Interval Queries in SQL Server, SQL Server

magazine article, Jun. 2013 (http://goo.gl/jE3scy)

 Davide Mauri: Using Spatial Data for Interval Queries, blog, Jul.

2013 (http://goo.gl/CEuiFr)

 Dejan Sarka: Various methods for optimizing temporal queries,

Pluralsight course Working with Temporal Data in SQL Server

(http://goo.gl/XdeRbI)

Classical T-SQL Solution

 Intervals represented with two columns – begin and end [b, e]

 Representation with integers

 Find all intervals [b, e] that overlap with a given interval [@b,

@e]

 Classic predicate: WHERE b <= @e AND @b <= e

)1221()21(ebebii overlaps  

http://www.ics.uci.edu/~alspaugh/cls/shr/allen.html
http://goo.gl/X7GrQb
http://www.amazon.com/Temporal-Relational-Kaufmann-Management-Systems/dp/1558608559/ref=sr_1_1?ie=UTF8&qid=1377858099&sr=8-1&keywords=chris+date+temporal
http://goo.gl/YsgBxk
http://www.dbs.ifi.lmu.de/Publikationen/Papers/VLDB2000.pdf
http://goo.gl/4mkDEU
http://www.solidq.com/sqj/Pages/2011-September-Issue/A-Static-Relational-Interval-Tree.aspx
http://goo.gl/qjjgMm
https://www.solidq.com/sqj/Pages/Relational/Advanced-interval-queries-with-the-Static-Relational-Interval-Tree.aspx
http://goo.gl/f8X3J4
http://www.amazon.com/Inside-Microsoft%C2%AE-Server%C2%AE-2008-Pro-Developer/dp/0735626022/ref=pd_sim_b_1
http://goo.gl/5TShFO
http://sqlmag.com/t-sql/sql-server-interval-queries
http://goo.gl/jE3scy
http://blogs.solidq.com/dsarka/Post.aspx?ID=150&title=Interval+Queries+in+SQL+Server+Part+2
http://goo.gl/CEuiFr
http://goo.gl/XdeRbI

Classical T-SQL Solution Problem

 Optimal indexes exist

 IDX1 – key b, included e

 IDX2 – key e, included b

 Problem: two range predicates (WHERE b <= @e AND @b <= e)

 Only one index is used

 E.g., use IDX1, seek for b, and then use e as the residual predicate to

filter while scanning the rows after the seek

 Such a seek is very efficient if @e is high

 Otherwise, IDX2 could be used

 Indexes are efficient only if they eliminate most of the rows before the

scan of the residual rows – if the [@b, @e] is close to the beginning or

to the end of the timeline

 Inefficient around the middle of the timeline

 Must prevent parameter sniffing

Relational Interval Tree (RIT)

 Only a brief introduction shown here; please refer to the

references for the detailed explanation

 RIT is a virtual binary tree

 Each interval gets an associated fork node – the lowest integer in the

range of min b and max e in the virtual tree that covers the interval

 Calculated with bisection

 Example: intervals between min b = 1 and max e = 31, interval [11, 13]

covered with the fork node 12

RIT Calculation

 Root of the tree covering intervals in range between 1 and

@max calculation:

Root = POWER(2, @h-1)

 Height of the tree covering intervals in range between 1 and

@max calculation:

Height = CEILING(LOG(@max + 1, 2))

 Fork nodes calculated with the bisection

 Not very efficient

Optimized Fork Node Calculation

 Fork node = matching prefix of (b - 1) and e || 1 || 0s

 Let A = (b - 1) ^ e -- XOR marks different bits 01010 ^ 01101 = 00111

 Let B = POWER(2, FLOOR(LOG(A, 2))) -- first different bit set to 1 like

in e: 00100

 Let C = e % B -- keep trailing bits from upper after set bit in B: 01

 Let D = e - C -- set trailing bits to 0s: 01100

e – e % POWER(2, CAST(LOG((b - 1) ^ e, 2) AS INT))

Querying RIT (1)

 Intervals stored with a fork node column

 Three groups of intervals that can overlap with a given interval:

 Left nodes are all intervals registered at a fork node W that is lower than

the fork node of the given interval [11, 13]

 Note false positives

 Find candidate nodes by descending in a loop from the top node to the

lower boundary of the given interval

Querying RIT (2)

 Three groups of intervals that can overlap with a given interval:

 Right nodes is the set of all nodes W that appear on the path and are to

the right of the input interval [11, 13]

 Note false positives

 Find candidate nodes by descending in a loop from the top node to the

upper boundary of the given interval

Querying RIT (3)

 Three groups of intervals that can overlap with a given interval:

 Middle nodes is the set of nodes W that reside within the input interval

[11, 13]

 All intervals registered at W, where node between @l and @u

 No false positives

Spatial Data Type (1)

 Use the Geometry data type for intervals

 Spatial indexes support in SQL Server

 STIntersects method

 Returns 1 if a spatial type (geometry or geography) instance

intersects another spatial type instance and returns 0 if it does

not

Spatial Data Type (2)

 Moderately efficient queries

 Spatial indexes less efficient than classical balanced trees

 The solution is simple

 No strong data typing

 The update performance is very bad

 The solution efficiency does not depend on the interval length

distribution

XML Data Type

 The next logical solution would be XML data type

 Standard

 XML indexes over a single column – a single index could be used by the

Query Optimizer

 And it is used! Unfortunately!

 Incredibly, incredibly inefficient

 7,000 times more IO than the initial query to optimize with the most

logical solution!

 8 times more IO after best XML optimization!

Enhanced T-SQL Solution (1)

 A simple idea: try to use a single index to eliminate

non-matching intervals from both sides

 Eliminating using the [lower] index

 Eliminating intervals from the right side: just eliminate all

intervals where the beginning is at least one unit bigger (more to

the right) of the end of the given interval

 In order to use the same index for eliminating from the left, you

need to use the beginning of the intervals in the table in the

WHERE clause of the query

 Go to the left side away from the beginning of the given interval

at least for the length of the longest interval in the table

 The intervals that begin before the beginning of the given interval

minus the length of the longest interval cannot overlap with the

given interval

Enhanced T-SQL Solution (2)

Enhanced T-SQL Solution (3)

 Can get extremely efficient queries

 The solution is simple

 However, the performance drops substantially as soon as you

have one very long interval in your table

 Therefore, the solution efficiency depends on the interval

length distribution

 The more uniform distribution, the more efficient solution

The IntervalCID Data Type (1)

 CLR data type methods include all Allen’s operators

and more

 IntervalCID = interval on a countably infinite discrete set

 Byte ordered (begin, end)

(1, 3)

(1, 5)

(2, 2)

(3, 4)

(3, 7)

(4, 5)

The IntervalCID Data Type (2)

 Querying by using data type methods only in the

WHERE predicate is inefficient

 Not a searchable argument (SARG)

 Modify the predicate similarly as with the enhanced T-SQL

solution

 Not just the lower and the upper boundaries of the

searched interval; use three intervals:

 An interval whose sort value is low enough to filter out the

intervals before the given one

 An interval whose sort value is high enough to filter out the

intervals after the given one

 A given interval to filter exactly the intervals needed, the ones

that really overlap with it

The IntervalCID Data Type (3)

 The solution is simple

 But only after the CLR type has been deployed

 However, the performance drops substantially if you

have only one very long interval in the table

 Therefore, the solution efficiency depends on the

interval length distribution

 The more uniform distribution, the more efficient solution

 Flexible - can use any other solution with persisted

properties of the CLR data type

Optimizing with the Unpacked Form (1)

 Three sets of intervals that represent the same points

{(2:5), (3:7), (10:12)}

{(2:2), (3:3), (4:4), (5:5), (6:6), (7:7), (10:10), (11:11), (12:12)}

{(2:7), (10:12)}

 The first set contains overlapping intervals

 The second set contains unit intervals only – the unpacked

form

 The third set represents the time points using the smallest

possible number of intervals – the packed form

Optimizing with the Unpacked Form (2)

 Use an auxiliary table of numbers and JOIN or a numbers

function and APPLY

 Store the unpacked form in an indexed view to get automatic

update of the data

 Store the unpacked form in a table to have possibility to use

compression

 Query either the unpacked view or the unpacked table

Optimizing with the Unpacked Form (3)

 Outstanding performance of queries

 The solution is moderately simple

 The solution efficiency does not depend on the interval length

distribution

 The update performance is bad with a view

 Space consumption is very high

 Might be problematic for intervals with many points

 Still, this is a constant problem, solvable with better HW

Compact Unpacked Form

20120319

20120320

…

20120331

20120400

20120500

…

20121200

20130000

20140000

Begin: 20120319 – End: 20170821

20150000

20160000

20170100

20170200

…

20170700

20170801

20170802

…

20170821

Need max.:

- 59 rows for sec at beginning, 59

rows for sec at end

- 59 rows for min at beginning, 59

rows for min at end

- 23 rows for h at beginning, 23 rows

for h at end

- 30 rows for day at beginning, 30

rows for day at end

- 11 rows for mon at beginning, 11

rows for mon at end

- 1 row for each full year

- ~400 rows for 20 years on sec level!

Search Form and Query

20161205

20161200

20160000

@b: 20161205 – @e: 20180227

Overlapping also when

(@b BETWEEN b AND e)

OR

(b BETWEEN @b and @e)

SELECT … FROM search form INNER JOIN

compact unpacked form

UNION ALL

SELECT … FROM original table WHERE b

BETWEEN @b and @e

Compact Unpacked Form with Integers

 Use original integers as strings

 nnnnA marks full tens, e.g. 0002A marks all numbers from 20 to 29

 nnnB0 marks full hundreds, e.g. 001B0 marks all numbers between 100

and 199

 Could expand to thousands, ten thousands, and more…

 The number of rows in the unpacked form is limited

 The update performance is very bad

 Could be better with a CLR compact unpacked form generator function

 The select performance pretty good

 The solution is not that simple

 Still simpler than RIT

Summary

 Querying intervals can be inefficient with a classical Transact-

SQL solution

 No way to optimize queries that search for intervals in the middle of the

timeline

 The Relational Interval Tree offers a solution

 Quite efficient queries no matter of interval distribution, length…

 Complex query that unions three result sets

 The leftNodes and rightNodes functions use iterative T-SQL and table

variable

 In a JOIN they are called once per row

 Not the most efficient solution possible

Summary

 Using the geometry data type solution is simple

 Many drawbacks

 The XML data type is useless

 Especially when SQL Server uses the XML indexes

 The enhanced T-SQL solution is a very good solution

 Only one drawback: the performance depends on the interval length

distribution

Summary

 The IntervalCID data type queries can be successfully

optimized

 Similar limitation as with the enhanced T-SQL solution: need uniform

interval length distribution

 The unpacked form gives perfect results

 Only one drawback: the number of rows

 The compact unpacked form limits the number of rows

 However, slows down the updates more than any other solution

 Which solution would you use?

 Decide based on your business needs, knowledge,…

 Every solution has some advantages and some drawbacks

