
Optimizing Temporal Queries

Introduction

• Dejan Sarka
– dsarka@solidq.com,

dsarka@siol.net, @DejanSarka

– Data Scientist

– MCT, SQL Server MVP

– 25+ years of data

modeling, data mining and

data quality

• 12 books, writing more

• ~10 courses

Module Overview

• Classical T-SQL solution

• Relational Interval Tree

• Using Spatial Data for temporal problems

• Can XML data type help?

• Enhanced T-SQL solution

• Enhanced T-SQL solution with the

IntervalCID type

• Optimizing with the unpacked form

• Compact unpacked form

mailto:dsarka@solidq.com
mailto:dsarka@siol.net

Theoretical Background

 James F. Allen: Interval Algebra, "Maintaining knowledge about

temporal intervals". Communications of the ACM 26(11)

pp.832-843, Nov. 1983 (http://goo.gl/X7GrQb)

 Chris J. Date, Hugh Darwen, Nikos Lorentzos: Temporal Data &

Relational Databases, Morgan Kaufmann, Nov. 2002

(http://goo.gl/YsgBxk)

 Hans-Peter Kriegel, Marco Pötke, Thomas Seidl: Managing

Intervals Efficiently in Object-Relational Databases,

Proceedings of the 26th International Conference on Very Large

Databases, Cairo, Egypt, 2000 (http://goo.gl/4mkDEU)

 Laurent Martin: A Static Relational Interval Tree, whitepaper,

Nov. 2011 (http://goo.gl/qjjgMm) and Advanced Interval Queries

with the Static Relational Interval Tree, whitepaper, Jan. 2013

(http://goo.gl/f8X3J4)

SQL Server Solutions

 Dejan Sarka: Inside SQL Server 2008: Transact-SQL

Programming, chapter 12, Temporal Support in the Relational

Model, Microsoft Press, Oct. 2009 (http://goo.gl/5TShFO)

 Itzik Ben-Gan: Interval Queries in SQL Server, SQL Server

magazine article, Jun. 2013 (http://goo.gl/jE3scy)

 Davide Mauri: Using Spatial Data for Interval Queries, blog, Jul.

2013 (http://goo.gl/CEuiFr)

 Dejan Sarka: Various methods for optimizing temporal queries,

Pluralsight course Working with Temporal Data in SQL Server

(http://goo.gl/XdeRbI)

Classical T-SQL Solution

 Intervals represented with two columns – begin and end [b, e]

 Representation with integers

 Find all intervals [b, e] that overlap with a given interval [@b,

@e]

 Classic predicate: WHERE b <= @e AND @b <= e

)1221()21(ebebii overlaps

http://www.ics.uci.edu/~alspaugh/cls/shr/allen.html
http://goo.gl/X7GrQb
http://www.amazon.com/Temporal-Relational-Kaufmann-Management-Systems/dp/1558608559/ref=sr_1_1?ie=UTF8&qid=1377858099&sr=8-1&keywords=chris+date+temporal
http://goo.gl/YsgBxk
http://www.dbs.ifi.lmu.de/Publikationen/Papers/VLDB2000.pdf
http://goo.gl/4mkDEU
http://www.solidq.com/sqj/Pages/2011-September-Issue/A-Static-Relational-Interval-Tree.aspx
http://goo.gl/qjjgMm
https://www.solidq.com/sqj/Pages/Relational/Advanced-interval-queries-with-the-Static-Relational-Interval-Tree.aspx
http://goo.gl/f8X3J4
http://www.amazon.com/Inside-Microsoft%C2%AE-Server%C2%AE-2008-Pro-Developer/dp/0735626022/ref=pd_sim_b_1
http://goo.gl/5TShFO
http://sqlmag.com/t-sql/sql-server-interval-queries
http://goo.gl/jE3scy
http://blogs.solidq.com/dsarka/Post.aspx?ID=150&title=Interval+Queries+in+SQL+Server+Part+2
http://goo.gl/CEuiFr
http://goo.gl/XdeRbI

Classical T-SQL Solution Problem

 Optimal indexes exist

 IDX1 – key b, included e

 IDX2 – key e, included b

 Problem: two range predicates (WHERE b <= @e AND @b <= e)

 Only one index is used

 E.g., use IDX1, seek for b, and then use e as the residual predicate to

filter while scanning the rows after the seek

 Such a seek is very efficient if @e is high

 Otherwise, IDX2 could be used

 Indexes are efficient only if they eliminate most of the rows before the

scan of the residual rows – if the [@b, @e] is close to the beginning or

to the end of the timeline

 Inefficient around the middle of the timeline

 Must prevent parameter sniffing

Relational Interval Tree (RIT)

 Only a brief introduction shown here; please refer to the

references for the detailed explanation

 RIT is a virtual binary tree

 Each interval gets an associated fork node – the lowest integer in the

range of min b and max e in the virtual tree that covers the interval

 Calculated with bisection

 Example: intervals between min b = 1 and max e = 31, interval [11, 13]

covered with the fork node 12

RIT Calculation

 Root of the tree covering intervals in range between 1 and

@max calculation:

Root = POWER(2, @h-1)

 Height of the tree covering intervals in range between 1 and

@max calculation:

Height = CEILING(LOG(@max + 1, 2))

 Fork nodes calculated with the bisection

 Not very efficient

Optimized Fork Node Calculation

 Fork node = matching prefix of (b - 1) and e || 1 || 0s

 Let A = (b - 1) ^ e -- XOR marks different bits 01010 ^ 01101 = 00111

 Let B = POWER(2, FLOOR(LOG(A, 2))) -- first different bit set to 1 like

in e: 00100

 Let C = e % B -- keep trailing bits from upper after set bit in B: 01

 Let D = e - C -- set trailing bits to 0s: 01100

e – e % POWER(2, CAST(LOG((b - 1) ^ e, 2) AS INT))

Querying RIT (1)

 Intervals stored with a fork node column

 Three groups of intervals that can overlap with a given interval:

 Left nodes are all intervals registered at a fork node W that is lower than

the fork node of the given interval [11, 13]

 Note false positives

 Find candidate nodes by descending in a loop from the top node to the

lower boundary of the given interval

Querying RIT (2)

 Three groups of intervals that can overlap with a given interval:

 Right nodes is the set of all nodes W that appear on the path and are to

the right of the input interval [11, 13]

 Note false positives

 Find candidate nodes by descending in a loop from the top node to the

upper boundary of the given interval

Querying RIT (3)

 Three groups of intervals that can overlap with a given interval:

 Middle nodes is the set of nodes W that reside within the input interval

[11, 13]

 All intervals registered at W, where node between @l and @u

 No false positives

Spatial Data Type (1)

 Use the Geometry data type for intervals

 Spatial indexes support in SQL Server

 STIntersects method

 Returns 1 if a spatial type (geometry or geography) instance

intersects another spatial type instance and returns 0 if it does

not

Spatial Data Type (2)

 Moderately efficient queries

 Spatial indexes less efficient than classical balanced trees

 The solution is simple

 No strong data typing

 The update performance is very bad

 The solution efficiency does not depend on the interval length

distribution

XML Data Type

 The next logical solution would be XML data type

 Standard

 XML indexes over a single column – a single index could be used by the

Query Optimizer

 And it is used! Unfortunately!

 Incredibly, incredibly inefficient

 7,000 times more IO than the initial query to optimize with the most

logical solution!

 8 times more IO after best XML optimization!

Enhanced T-SQL Solution (1)

 A simple idea: try to use a single index to eliminate

non-matching intervals from both sides

 Eliminating using the [lower] index

 Eliminating intervals from the right side: just eliminate all

intervals where the beginning is at least one unit bigger (more to

the right) of the end of the given interval

 In order to use the same index for eliminating from the left, you

need to use the beginning of the intervals in the table in the

WHERE clause of the query

 Go to the left side away from the beginning of the given interval

at least for the length of the longest interval in the table

 The intervals that begin before the beginning of the given interval

minus the length of the longest interval cannot overlap with the

given interval

Enhanced T-SQL Solution (2)

Enhanced T-SQL Solution (3)

 Can get extremely efficient queries

 The solution is simple

 However, the performance drops substantially as soon as you

have one very long interval in your table

 Therefore, the solution efficiency depends on the interval

length distribution

 The more uniform distribution, the more efficient solution

The IntervalCID Data Type (1)

 CLR data type methods include all Allen’s operators

and more

 IntervalCID = interval on a countably infinite discrete set

 Byte ordered (begin, end)

(1, 3)

(1, 5)

(2, 2)

(3, 4)

(3, 7)

(4, 5)

The IntervalCID Data Type (2)

 Querying by using data type methods only in the

WHERE predicate is inefficient

 Not a searchable argument (SARG)

 Modify the predicate similarly as with the enhanced T-SQL

solution

 Not just the lower and the upper boundaries of the

searched interval; use three intervals:

 An interval whose sort value is low enough to filter out the

intervals before the given one

 An interval whose sort value is high enough to filter out the

intervals after the given one

 A given interval to filter exactly the intervals needed, the ones

that really overlap with it

The IntervalCID Data Type (3)

 The solution is simple

 But only after the CLR type has been deployed

 However, the performance drops substantially if you

have only one very long interval in the table

 Therefore, the solution efficiency depends on the

interval length distribution

 The more uniform distribution, the more efficient solution

 Flexible - can use any other solution with persisted

properties of the CLR data type

Optimizing with the Unpacked Form (1)

 Three sets of intervals that represent the same points

{(2:5), (3:7), (10:12)}

{(2:2), (3:3), (4:4), (5:5), (6:6), (7:7), (10:10), (11:11), (12:12)}

{(2:7), (10:12)}

 The first set contains overlapping intervals

 The second set contains unit intervals only – the unpacked

form

 The third set represents the time points using the smallest

possible number of intervals – the packed form

Optimizing with the Unpacked Form (2)

 Use an auxiliary table of numbers and JOIN or a numbers

function and APPLY

 Store the unpacked form in an indexed view to get automatic

update of the data

 Store the unpacked form in a table to have possibility to use

compression

 Query either the unpacked view or the unpacked table

Optimizing with the Unpacked Form (3)

 Outstanding performance of queries

 The solution is moderately simple

 The solution efficiency does not depend on the interval length

distribution

 The update performance is bad with a view

 Space consumption is very high

 Might be problematic for intervals with many points

 Still, this is a constant problem, solvable with better HW

Compact Unpacked Form

20120319

20120320

…

20120331

20120400

20120500

…

20121200

20130000

20140000

Begin: 20120319 – End: 20170821

20150000

20160000

20170100

20170200

…

20170700

20170801

20170802

…

20170821

Need max.:

- 59 rows for sec at beginning, 59

rows for sec at end

- 59 rows for min at beginning, 59

rows for min at end

- 23 rows for h at beginning, 23 rows

for h at end

- 30 rows for day at beginning, 30

rows for day at end

- 11 rows for mon at beginning, 11

rows for mon at end

- 1 row for each full year

- ~400 rows for 20 years on sec level!

Search Form and Query

20161205

20161200

20160000

@b: 20161205 – @e: 20180227

Overlapping also when

(@b BETWEEN b AND e)

OR

(b BETWEEN @b and @e)

SELECT … FROM search form INNER JOIN

compact unpacked form

UNION ALL

SELECT … FROM original table WHERE b

BETWEEN @b and @e

Compact Unpacked Form with Integers

 Use original integers as strings

 nnnnA marks full tens, e.g. 0002A marks all numbers from 20 to 29

 nnnB0 marks full hundreds, e.g. 001B0 marks all numbers between 100

and 199

 Could expand to thousands, ten thousands, and more…

 The number of rows in the unpacked form is limited

 The update performance is very bad

 Could be better with a CLR compact unpacked form generator function

 The select performance pretty good

 The solution is not that simple

 Still simpler than RIT

Summary

 Querying intervals can be inefficient with a classical Transact-

SQL solution

 No way to optimize queries that search for intervals in the middle of the

timeline

 The Relational Interval Tree offers a solution

 Quite efficient queries no matter of interval distribution, length…

 Complex query that unions three result sets

 The leftNodes and rightNodes functions use iterative T-SQL and table

variable

 In a JOIN they are called once per row

 Not the most efficient solution possible

Summary

 Using the geometry data type solution is simple

 Many drawbacks

 The XML data type is useless

 Especially when SQL Server uses the XML indexes

 The enhanced T-SQL solution is a very good solution

 Only one drawback: the performance depends on the interval length

distribution

Summary

 The IntervalCID data type queries can be successfully

optimized

 Similar limitation as with the enhanced T-SQL solution: need uniform

interval length distribution

 The unpacked form gives perfect results

 Only one drawback: the number of rows

 The compact unpacked form limits the number of rows

 However, slows down the updates more than any other solution

 Which solution would you use?

 Decide based on your business needs, knowledge,…

 Every solution has some advantages and some drawbacks

