
Things You Can Find
in the Plan Cache

 Name: Matan Yungman

 Role: Technical Evangelist at Madeira

 Website: www.madeirasql.com

 Mail: matan@madeira.co.il

 Twitter: @MatanYungman

 Podcast: www.sqlserverradio.co.il

 www.sqlserverradio.com

http://www.madeirasql.com/
mailto:matan@madeira.co.il
http://www.sqlserverradio.co.il/
http://www.sqlserverradio.com/

 What is the Plan Cache

 Ways to explore it

– And what we can find while exploring

 How to successfully leverage it

 Querying it to identify problematic queries

 Querying Execution Plan XML

Optimize

Bind

Parse

 Query Execution Time

 CPU

 Memory

The Solution:

Save Plan for Future Reuse

Our Mission:
Maximize Reuse While Fixing The
Cases Where Reuse Is Not Good

 Built from 4 cache stores
• CACHESTORE_OBJCP – Object Plans

• CACHESTORE_SQLCP – Ad hoc and Prepared
Plans

• CACHESTORE_PHDR – Bound Trees

• CACHESTORE_XPROC – Extended Procedures

 “Steals” its memory from the buffer pool

 Each store is basically a hash table

 Age-out algorithm

 sys.dm_exec_cached_plans
– One row per batch
– Use counts
– Object type, Cache object type
– Plan_handle

 sys.dm_exec_query_stats
– One row per statement in a batch
– Execution count, Plan generation count
– IO, Duration
– Plan_handle, Sql_handle
– Query_hash, Query_plan_hash

 sys.dm_exec_sql_text
– Pass plan_handle/sql_handle to get batch text
– Use offsets to get query level text

 sys.dm_exec_query_plan
– Use to get the query plan
– Returns XML plan of all the statements in a

batch

 sys.dm_exec_text_query_plan
– Use to get the plan at the statement level
– Returns nvarchar(max). Cast it to XML

 Objects (Stored Procedures, Functions, Triggers)
– (ObjectID * DB_ID) % (Hash Table Size)

 Ad-hoc and prepared statements
– ObjectID = Query Text Hash

– Exact text match is needed

 Also for reuse to be possible:
– Set Options

– User ID (Schema ID)

– DB_ID

– And More…

 Lots of plans with use count of 1

 Not necessarily user queries

– ADO.Net, EXEC(), System Queries

 How to identify:

– Search for ad-hoc plans with use count = 1

 Optimization options:

– Optimize for ad hoc workloads

– Switch to parameterized methods

– Turn on Forced Parameterization

• Try to test it’s appropriate for your system

• Can also be used selectively through plan guides

SELECT

SUM(CAST(size_in_bytes BIGINT))/1024.0/1024.0

AS SizeInMB, COUNT(*) AS PlanCount

FROM sys.dm_exec_cached_plans

WHERE objtype = 'Adhoc'

AND cacheobjtype = 'Compiled Plan'

AND usecounts = 1

 Nhibernate

– String parameter lengths are supplied according
to each specific execution

– Solution: Nhibernate “prepare_sql” parameter

 Linq To SQL & Entity Framework

– Same as Nhibernate

– Solution: Upgrade to Dot Net 4.0

 Simple ADO.Net queries

– Act as Ad-hoc queries

– Optimization options:

• Optimize for ad-hoc workloads option

• ADO.Net parameterized queries (supply length for
strings)

• Forced parameterization

• Can help identify potentially reusable queries

• Recommended query #2:

SELECT

query_hash,COUNT(*) AS PlanCount

FROM sys.dm_exec_query_stats

GROUP BY query_hash

HAVING COUNT(*) > 1

 Age-out algorithm based on:
– Plan generation cost
– Usage

 On memory pressure, all plan costs are decreased by 1
 Plans with cost = 0 can be evicted

 Ad-hoc plans always enter with cost = 0
– Cost incremented by 1 on each reuse

 For other plans
– Cost is reset to the original value on reuse

 Ad-hoc max cost = 16
 Prepared max cost = 256
 No max cost for stored procedures

 DBCC FREEPROCCACHE

– Clears all plans

 Can also be more specific

– plan_handle / sql_handle / pool_name

 DBCC FREESYSTEMCACHE

– Specific cache store: ‘SQL Plans’ / ‘Object Plans’

 Undocumented

– DBCC FLUSHPROCINDB – Specific database

 We can answer questions like:

– Which queries are most IO/CPU/Time
intensive?

• Absolute numbers or per run

– Which database is the most resource intensive?

– What is the value a plan was optimized for?

– Which queries/objects are frequently
recompiled?

– And much more..

 Plan is optimized for first execution’s parameters

 Local variable values not known to the optimizer

 Possible solution: Recompile
– Stored procedure level:

• Create Procedure..With Recompile

• Exec..With Recompile

• sp_recompile

– Statement level:
• Option (Recompile)

 As we saw, it comes with a performance penalty

But there’s a problem

Recompile Ruins the Statistics We
Rely On When Querying the Plan

Cache!

 Create Procedure..With Recompile means:
– “Generate new plan on each run and don’t

cache it”

 Exec..With Recompile means:
– “Generate new plan for this run and don’t

cache it”

 Option (Rcompile) means:
– Generate new plan on each run

– Set execution_count to 1

– Increase plan_generation_num by 1

 Local variable problem?
– Pass the values as parameters from the outside
– Use Dynamic-SQL (preferably sp_executesql)

 Parameter Sniffing problem?
– Multiple procedures for different cardinalities
– Optimize for (@param = value)
– Optimize for unknown / parameter masking
– Plan freezing

• sp_create_plan_guide_from_handle

– Option (use plan)
• Can also be done with a plan guide

 Can answer questions like:

– Which plans suffer from missing indexes?

– Which plans suffer from
Implicit_Conversion?

– Which plans use a Clustered Index Scan?

– Which plans have inaccurate row count
estimation?

– And more..

 Reuse is almost always a good thing

 Try to prevent Plan Cache bloat

 Remember the effects of Recompile

 The Plan Cache is your workload – Get to
know it

 Scripts:

– madeirasql.com/things-you-can-find-sqlbits

http://www.madeirasql.com/things-you-can-find-sqlbits

Questions?

Thank you !

