
Things You Can Find
in the Plan Cache

 Name: Matan Yungman

 Role: Technical Evangelist at Madeira

 Website: www.madeirasql.com

 Mail: matan@madeira.co.il

 Twitter: @MatanYungman

 Podcast: www.sqlserverradio.co.il

 www.sqlserverradio.com

http://www.madeirasql.com/
mailto:matan@madeira.co.il
http://www.sqlserverradio.co.il/
http://www.sqlserverradio.com/

 What is the Plan Cache

 Ways to explore it

– And what we can find while exploring

 How to successfully leverage it

 Querying it to identify problematic queries

 Querying Execution Plan XML

Optimize

Bind

Parse

 Query Execution Time

 CPU

 Memory

The Solution:

Save Plan for Future Reuse

Our Mission:
Maximize Reuse While Fixing The
Cases Where Reuse Is Not Good

 Built from 4 cache stores
• CACHESTORE_OBJCP – Object Plans

• CACHESTORE_SQLCP – Ad hoc and Prepared
Plans

• CACHESTORE_PHDR – Bound Trees

• CACHESTORE_XPROC – Extended Procedures

 “Steals” its memory from the buffer pool

 Each store is basically a hash table

 Age-out algorithm

 sys.dm_exec_cached_plans
– One row per batch
– Use counts
– Object type, Cache object type
– Plan_handle

 sys.dm_exec_query_stats
– One row per statement in a batch
– Execution count, Plan generation count
– IO, Duration
– Plan_handle, Sql_handle
– Query_hash, Query_plan_hash

 sys.dm_exec_sql_text
– Pass plan_handle/sql_handle to get batch text
– Use offsets to get query level text

 sys.dm_exec_query_plan
– Use to get the query plan
– Returns XML plan of all the statements in a

batch

 sys.dm_exec_text_query_plan
– Use to get the plan at the statement level
– Returns nvarchar(max). Cast it to XML

 Objects (Stored Procedures, Functions, Triggers)
– (ObjectID * DB_ID) % (Hash Table Size)

 Ad-hoc and prepared statements
– ObjectID = Query Text Hash

– Exact text match is needed

 Also for reuse to be possible:
– Set Options

– User ID (Schema ID)

– DB_ID

– And More…

 Lots of plans with use count of 1

 Not necessarily user queries

– ADO.Net, EXEC(), System Queries

 How to identify:

– Search for ad-hoc plans with use count = 1

 Optimization options:

– Optimize for ad hoc workloads

– Switch to parameterized methods

– Turn on Forced Parameterization

• Try to test it’s appropriate for your system

• Can also be used selectively through plan guides

SELECT

SUM(CAST(size_in_bytes BIGINT))/1024.0/1024.0

AS SizeInMB, COUNT(*) AS PlanCount

FROM sys.dm_exec_cached_plans

WHERE objtype = 'Adhoc'

AND cacheobjtype = 'Compiled Plan'

AND usecounts = 1

 Nhibernate

– String parameter lengths are supplied according
to each specific execution

– Solution: Nhibernate “prepare_sql” parameter

 Linq To SQL & Entity Framework

– Same as Nhibernate

– Solution: Upgrade to Dot Net 4.0

 Simple ADO.Net queries

– Act as Ad-hoc queries

– Optimization options:

• Optimize for ad-hoc workloads option

• ADO.Net parameterized queries (supply length for
strings)

• Forced parameterization

• Can help identify potentially reusable queries

• Recommended query #2:

SELECT

query_hash,COUNT(*) AS PlanCount

FROM sys.dm_exec_query_stats

GROUP BY query_hash

HAVING COUNT(*) > 1

 Age-out algorithm based on:
– Plan generation cost
– Usage

 On memory pressure, all plan costs are decreased by 1
 Plans with cost = 0 can be evicted

 Ad-hoc plans always enter with cost = 0
– Cost incremented by 1 on each reuse

 For other plans
– Cost is reset to the original value on reuse

 Ad-hoc max cost = 16
 Prepared max cost = 256
 No max cost for stored procedures

 DBCC FREEPROCCACHE

– Clears all plans

 Can also be more specific

– plan_handle / sql_handle / pool_name

 DBCC FREESYSTEMCACHE

– Specific cache store: ‘SQL Plans’ / ‘Object Plans’

 Undocumented

– DBCC FLUSHPROCINDB – Specific database

 We can answer questions like:

– Which queries are most IO/CPU/Time
intensive?

• Absolute numbers or per run

– Which database is the most resource intensive?

– What is the value a plan was optimized for?

– Which queries/objects are frequently
recompiled?

– And much more..

 Plan is optimized for first execution’s parameters

 Local variable values not known to the optimizer

 Possible solution: Recompile
– Stored procedure level:

• Create Procedure..With Recompile

• Exec..With Recompile

• sp_recompile

– Statement level:
• Option (Recompile)

 As we saw, it comes with a performance penalty

But there’s a problem

Recompile Ruins the Statistics We
Rely On When Querying the Plan

Cache!

 Create Procedure..With Recompile means:
– “Generate new plan on each run and don’t

cache it”

 Exec..With Recompile means:
– “Generate new plan for this run and don’t

cache it”

 Option (Rcompile) means:
– Generate new plan on each run

– Set execution_count to 1

– Increase plan_generation_num by 1

 Local variable problem?
– Pass the values as parameters from the outside
– Use Dynamic-SQL (preferably sp_executesql)

 Parameter Sniffing problem?
– Multiple procedures for different cardinalities
– Optimize for (@param = value)
– Optimize for unknown / parameter masking
– Plan freezing

• sp_create_plan_guide_from_handle

– Option (use plan)
• Can also be done with a plan guide

 Can answer questions like:

– Which plans suffer from missing indexes?

– Which plans suffer from
Implicit_Conversion?

– Which plans use a Clustered Index Scan?

– Which plans have inaccurate row count
estimation?

– And more..

 Reuse is almost always a good thing

 Try to prevent Plan Cache bloat

 Remember the effects of Recompile

 The Plan Cache is your workload – Get to
know it

 Scripts:

– madeirasql.com/things-you-can-find-sqlbits

http://www.madeirasql.com/things-you-can-find-sqlbits

Questions?

Thank you !

