
SQLDataSources,

LINQDataSources

and EntityDatasources

in

Database Design

Andrew Couch

UK Access User Group

asc associates

www.upsizing.co.uk/downloads/sqlbits.zip

Contents

 Design philosophy and strategies

 SQLDataSource

 LINQDataSource

 EntityDataSource

 Summary; SQL,LINQ and EDM

 Integrating SQL Server security with .net

Goals

 Easy methods for changing the user interface

layouts

 Intelligence in linkage between presentation

layer and the database layer (mechanics)

 Flexibility to allow design changes in the

database to be easily synchronised into VS

 Minimise (realistically) program code that

needs to be written

For Access Applications

Layers: Architecture - options

 SQL Server
• Tables etc.

• Triggers

• Views

• Stored procedures

• Functions

• .net Assemblies

 Data Model
• View updateability mechanics

• Concurrency mechanics

• Navigation

 Presentation Layer
• Controls on WebForms

• Code behind mechanics

SQLDataSource

Typical mark-up

Concurrency control (shows VS2008 and

alternative approach to handle null values)

Field name issues and Binding

<asp:TextBox ID="stxt_param_CategoryName_Edit" runat="server"

Text='<%# Bind("_param_CategoryName") %>' width = "134px"

style = "position : absolute; top: 5px; Left: 295px; "

CssClass = "cssSearchViewTextBoxEdit" ></asp:TextBox>

<asp:TextBox ID="txtQtr1" runat="server" Text='<%# Eval("[Qtr 1]","{0:c}") %>'

CssClass = "cssGridViewTextBox" Width = "84px" ></asp:TextBox>

Bind supports bi-directional transfer of data and allows the field

to be updated. As the field [Qtr 1] has a space in the name we

Can only use Eval, which is unidirectional, so the data can not be

updated.

SQLDataSource

 Advantages
• Written inTSQL using built in functions etc. Very familiar syntax.

• Can update views subject to normal restrictions

 Disadvantages
• Some issues with updating against null values, easily resolved

• Default write-back overwrites data

• Implement your own optimistic write-back, previous values are available.

• Can’t utilise row versioning / timestamps

• Data binding to fields with spaces or other non-alphanumeric characters such

as % are read-only

LINQDataSource

SQLMetal

C:\Program Files\Microsoft

SDKs\Windows\v6.0A\Bin

http://sourceforge.net/projects/sqlmetalbuilder

Importing the dbml file

LINQ Data Model

LINQDataSource with

concurrency

LINQ and a TIMESTAMP (SQL

Profiler Trace)

Filtering Data Example

Records with NULL in numeric

or datetime can NOT be edited!

Note this works with DetailView, GridView, ListView

but NOT FormView control

Updateable Views

You need to specify the key fields,

then the view is updateable.

Updating the model

 Subsequent synchronisation to the database is a

manual operation

 Sometime you can get confused, and need to re-

generate the model

 If regenerated adding back in the keys on views is a

tedious task

LINQDataSource

 Advantages
• Automatic intelligent support for row versioning

• Field names with spaces or special characters are updateable

• Graphical picture of the database model

• Drag and drop support to build model

• SQLMetal for automated model building (external supplied program)

• Views just require unique key to be annotated to become updateable

 Disadvantages
• Manual updates for changes in database design

• Where clause does support date comparisons

• FormView can not update database fields containing NULL values for numerical or date fields

• Can not use any SQL Server built in functions etc, does not use TSQL syntax

 Neutral points
• Spaces in entity names are removed, but in field names they are replaced with _ (not consistent)

• Inconsistency when using schemas, preserved by SQLMetal but removed from name when using

drag and drop

• Uses C# style syntax in WHERE clauses not SQL

EntityDataSource

Adding an EDM

Entity Data Model

Updating the Model

The model can be

resynchronised with the

Database design.

Hidden Foreign Keys

The foreign key CategoryID

in the table Products is not

directly available.

Do not have any updateability

problem with null values

EntityDataSource

EDM Foreign Key Syntax

Filtering Example

EDM Updating a view?

oUnable to update the EntitySet 'vw_tblParameters' because it

has a DefiningQuery and no <UpdateFunction> element exists in

the <ModificationFunctionMapping> element to support the

current operation.

Solution to this problem is explained in the following article.

http://blogs.msdn.com/adonet/archive/2008/03/26/stored-

procedure-mapping.aspx

http://blogs.msdn.com/adonet/archive/2008/03/26/stored-procedure-mapping.aspx
http://blogs.msdn.com/adonet/archive/2008/03/26/stored-procedure-mapping.aspx
http://blogs.msdn.com/adonet/archive/2008/03/26/stored-procedure-mapping.aspx
http://blogs.msdn.com/adonet/archive/2008/03/26/stored-procedure-mapping.aspx
http://blogs.msdn.com/adonet/archive/2008/03/26/stored-procedure-mapping.aspx

Automatic Key Identification In

A View

Stored Procedure Mapping

Stored Procedures

CREATE PROC vw_tblParameters_Update

@Parameters_UserId INT,

@C_param_BeginningDate DATETIME,

@C_param_cboCustomerSelect VARCHAR(5),

@C_param_EndingDate DATETIME,

@C_param_OrderID INT,

@tblParametersTS TIMESTAMP

AS

UPDATE vw_tblParameters

SET _param_BeginningDate = @C_param_BeginningDate,

_param_cboCustomerSelect = @C_param_cboCustomerSelect,

_param_EndingDate = @C_param_EndingDate,

_param_OrderID = @C_param_OrderID

WHERE Parameters_UserId = @Parameters_UserId AND

tblParametersTS = @tblParametersTS

GO

Example Code Linkage

EntityDataSource

 Advantages
• Automatic intelligent support for row versioning

• Field names with spaces or special characters are updateable

• Graphical picture of the database model

• Automatic update of EDM for changes in database design

• Integrated wizard to update and generate models

• Dynamic Data Entities Web Site, with forms and navigation

 Disadvantages
• Need to write stored procedures for view requiring updateability

• Can not use any SQL Server built in functions etc, does not use TSQL syntax

 Neutral
• Foreign keys are not exposed, leading to a new syntax to refer to the key on the other-side of the

relationship

• Uses C# style syntax in WHERE clauses no TSQL, additional support for like keyword syntax added

• Field names starting with an _ receive a C character prefix, _Date becomes C_Date

• Consistently spaces are replaced in both entity names and field names with an _

DataSource Summary

Factor Summary

 Updateable Views (LINQ+,SQL+,EDM+)

 Timestamp Concurrency control (LINQ+, EDM+, SQL-)

 Navigation (EDM+)

 Foreign key syntax (EDM different)

 Model updateability (EDM+, LINQ-)

 C# Language syntax style (LINQ, EDM)

 TSQL Language syntax style (SQL)

 Handling null values with FormView (LINQ-,SQL+,EDM+)

 Field naming issues (LINQ+, EDM+, SQL-)

Exploiting CSS

 Adjusting form layout is difficult

 Why ? Because each control appears in several templates

 CSS can carry positional information

 Edit in one template, effects all other templates

 So each page has a specialised CSS

http://www.upsizing.co.uk/Art42_CSSDesignStrategy.aspx

Exploiting Ajax

 Partial page updates

 Improves performance

 Very easy to add

http://www.upsizing.co.uk/Art43_Ajax.aspx

Dropdown lists and data

integrity

 It is common for a database to have values in fields which use
a lookup, where the field values no longer exist in the available
choice; R.I stops this problem, as it would violate R.I to have
this occur.

 It is common even with R.I, to suppress certain lookup values
that maybe present in the underlying data, but no longer a
valid choice for users to pick.
• For example (SELECT Country FROM tblCountries WHERE Inactive = 0)

 Impact .net crashes (Access anticipated this problem in
dropdown controls).

 On many systems this is a seriously non-trivial issue!!!!!!!!!!!

 One solution is to set existing values to null

DropDownList performance

 A ListView with 10 rows

 Each has a Dropdown list with 200 choices

 Browser renders 10*200 data items

 Would be nice not to have this performance
problem.

Integrating SQL Server

security with .net

http://www.upsizing.co.uk/Art34_IntergratingASPSecurity.aspx

has all the code to download for this

http://www.upsizing.co.uk/Art34_IntergratingASPSecurity.aspx

ASP.NET Security

 Table driven, held in a SQL Server

database

 Integrated with a set of interface controls

 Supports Users and Roles

SQL Server Security

 SQL Server Logins

 Users

 Roles

Mapping (synchronise)

Triggers in aspnet

database

Also require some code in your
Application database

Asp.net Username = SQL Server

Login name and Username in database

ASP.net userkey = SQL Server

Login password

Dynamically Changing

Connection Strings

 To point users at different databases, for example
switching between test and live systems

 To build a SQL Server login and password into a
connection string for each user

 Before LINQ this was a difficult task to achieve

Mapping for data access

 Pickup the asp.net users credentials

 Built a connection string on the fly which

can be used for that user when using

any data controls

Pickup asp.net credentials and

build a connection string

Protected Sub Login1_LoggedIn(ByVal sender As Object, ByVal e As System.EventArgs)
Handles Login1.LoggedIn

' Simulates a user login generating the connection string
' which will be used by LINQ DataContext
Dim user As MembershipUser
user = Membership.GetUser(Login1.UserName.ToString)
Session("SQL_LoginName") = Login1.UserName.ToString
Session("SQL_LoginPassword") = UCase(user.ProviderUserKey.ToString)
Session("UsersConnectionString") = New BuildConnectionStrings().ConnectionString
Response.Redirect("SecurityLoginTest.aspx")

End Sub

Connection String Builder

Imports Microsoft.VisualBasic
Imports System.Web.SessionState
Public Class BuildConnectionStrings

Private Shared ReadOnly Property Session() As HttpSessionState
Get

Return HttpContext.Current.Session
End Get

End Property
Public Function ConnectionString() As String

Dim connstr As String
connstr = ConfigurationManager.ConnectionStrings("NorthwindConnectionString1").ConnectionString
' now we substitute the users login credentials into the connection string
connstr = Replace(connstr, ";Integrated Security=True", "")
connstr = connstr & ";UID = " & Session("SQL_LoginName") & ";PWD= " & Session("SQL_LoginPassword")
ConnectionString = connstr

End Function
End Class

Wrapping A Context Class

(Clever bit)

Imports Microsoft.VisualBasic
Imports System
Imports System.Web.SessionState
Partial Public Class MyDataContext : Inherits Northwind

Private Shared ReadOnly Property Session() As HttpSessionState
Get

Return HttpContext.Current.Session
End Get

End Property
Public Sub New()

MyBase.Connection.ConnectionString = Session("UsersConnectionString")
End Sub

End Class

Using the new class

<asp:LinqDataSource ID="LinqDataSource1" runat="server"
ContextTypeName="MyDataContext"

Web.config security settings

<authentication mode="Forms" />

MUST Migration Upsizing SQL Tool ™

 Download a trial version from www.upsizing.co.uk

 Site contains a number of technical articles, expanding on these topics

 www.upsizing.co.uk/downloads/sqlbits.zip (for this presentation)

 Follow us on twitter @upsizing

 andy@ascassociates.biz

http://www.upsizing.co.uk/
http://www.upsizing.co.uk/sqlbits.zip
mailto:andy@ascassociates.biz

