Alberto Ferrari
alberto.ferrari@sqlbi.com

Inside xVelocity
In-memory Engine

m sqlbi


http://www.sqlbi.com

Who's speaking Spaghetti English?

Bl Expert and Consultant _

* Founder of www.sglbi.com

o Problem Solving

o Complex Project Assistance

o DataWarehouse Assesments and Development
o Courses, Trainings and Workshops

* Book Writer

 Microsoft Business Intelligence Gold Partners

e SSAS Maestro — MVP — MCP

Mecroson.

Microsoft

SQL Server 2012

Analysis Services Buuldlng Datz
The BISM Tabular Model

with PowerPivot

m sqlbi




Tabular Query Architecture

DAX / MDX query

Analysis Services 2012
Tabular Model

Query

Query

In-Memory Mode

DirectQuery Mode

Storage

Engine Qu

Process = Read Data
from External Sources

SQL Query

External Data Sources

m sqlbi



Different Query Handling

* |In-Memory mode

o DAX Formula Engine

o XVelocity in-memory analytics Engine
(Vertipaq)

o Full Tabular options available

e DirectQuery mode

- DAXto SQL translation
o SQL Server queries
o Many limitations (we will see them later)

m sqlbi



Agenda

« How xVelocity stores data
* Memory usage and monitoring
« Some basic optimization techniques

A few best practices

m sqlbi



What 1s xVelocity in-memory?

* |tis anin-memory database
 Based on the relational methodology

e Column oriented database

m sqlbi



Row Storage Layout

Customers Table

o | name | adoress | cy | stae | aioue
1 Bob

O 00 N o u B W N

3,000 1 Bob
Sue 500 2 Sue
Ann 1,700 3 Ann
Jim 1,500
Liz 0 4 Jim
Dave 9,000 5 Liz
Sue 1,010 6 Dave
Bob 50
Jim 1,300 7 Sue
8 Bob
9 Jim

Nothing special here.

This is the standard way database systems have been laying out
tables on disk since the mid 1970s.

Technically, it is called a “row store”

3,000
500
1,700

1,500
9,000
1,010

50
1,300

m sqlbi



Column Storage Layout

Customers Table

o | ame | adaress | ciy | stae
1 Bob o v v

O 00 N o u B W N

3,000
Sue . . . 500
Ann v . . 1,700
Jim . . . 1,500
Liz " " " 0
Dave . . . 9,000
Sue " " " 1,010
Bob . . . 50
Jim " " " 1,300

Bal Due

o I vame [ s

O 00 N o u B W N

Bob
Sue
Ann
Jim
Liz
Dave
Sue
Bob

Jim

stored in a single block

Tables are stored “column-wise” with all values from a single column

3,000
500
1,700
1,500
0
9,000
1,010
50
1,300

m sqlbi



Column vs Row Storage

 Column Storage

o Quick access to a single column
o Time needed to materialize rows
o Trade CPUvsI/O

« Row Storage

- Quick access to a single row
- No materialization needed
- Tradel/O vs CPU

m sqlbi



Run Length Encoding (RLE)

e e Cquirier | st count [ Price
~n
Q1 1 100 Q1 1 310 100

Q1 1 120 Q2 311 290 120

Q1 1 315 315

Q1 > 1 100 100
ProdID C

o , s | Prodip_| start | Count | s
1 1 5

Q1 2 198 198
2 6 3

i 2 450 450

Q@2 N 2 320 320
1 51 5

Q2 320 320
2 56 3

Q2 1 150 150

Q2 1 256 256

Q2 > 1 450 450

Q2 1 192 RLE Compression applied only 192

Q2 1 184 when size of compressed data 184

Q2 2 310 is smaller than original 310

Q2 2 251 251

2 266 266

m sqlbi



Dictionary Encoding

| Quarter | XN RS | o0y 4 values.

at 0 0 at 2 bits are enough to

a ° ' @ represent it

Q1 0 2 Q3

Z; : ’ Q4 / xVelocity Store \
0 1 4

Q2 1 1 5 10

Q3 2 2 11 4

Q3 2 3 15 15

Q3 2

Q3 2

Q4 4

Q4 4

Q4 4

Q4 4

> m{qlbi



xVelocity in-memory Compression

* Dictionary Encoding

o Happens when necessary

- Very large ranges of integers are not encoded
o Makes tables datatype-independent

« RLE Encoding

o Only if compressed data is smaller than
original

o Strongly depends on data order
- SSAS automatically chooses best sorting

m sqlbi



xVelocity in-memory Compression

Compression comes from

o Column Store
o Dictionary Encoding
o RLE Encoding

Less RAM used for the in-memory database

Faster column scans

10x is a good average compression ratio

- Against non-compressed SQL database

m sqlbi



Segmentation

Each table is divided in segments

o 8 million rows for each segment in SSAS
o 1 million rows in PowerPivot

* Dictionary is global to the table

Bit-sizing is local to the segment

o Column «Date» uses 4 bits in segment 1
o Only 2 bits in segment 2

O EEE

DMYV available to query that info .
m sqlbi



Processing Phases

Segment N Segment N +1

Read & Encode Data Read & Encode Data
Segment N Segment N + 1

Build calc

cols, hier,
relationships

Compress

Segment
N+1

Compress
Segment N

m sqlbi



Special case of 3" segment

* First segment can “stretch” to be twice as large

 Optimizes for smaller lookup tables

Segment 1 + 2 Segment 3
Split Read & Encode
P Data Segment 3
t
Compress Compress
Segment 1 Segment 3
Compress
Segment 2 |
m sqlbi

Read & Encode Data

Segment (until 2*segment_size)



Processing - Memory & CPU usage

|||, .Illl" I'III il A |'||I,‘|'||1"||

i
|
|

s . |||"'||| hin . ||. |r||i|
|

URNEAUN N

.\""I Ilf|||'| i |f| ,1f||i L |,|| Ul . "I, -| f n"1
u |, ||"|’n*l““n'"\|

Network

f "'I'I'-ilI"fl'lllr"‘i'.'lﬂl'l.‘

'| F ||'|

ol ! | I||
I ||1 '|.l'1| |

|
NI

Segment 1 + 2

Read & Encode Data
Segment (until 2*segment_size)

|

| | - 1 -
_"|1III'1| L‘Hl hll'll'.'llIF"fl"""‘l.thl"uqlh‘llill'uli-'lﬂl'lll"qlI'III‘Il II!"-,_.'Ilhllll‘.Illﬁllllll-..ll |-I ."' | ]l I|||' I|I I

AW |1 N

Segment 3

Memory

Read & Encode Data
Segment 3
Compress Segment 1 Compress

Compress Segment 2 Segment 3

ATNIE

CPU




Data Memory Usage

* Memory usage depends on

o Number of columns

- Cardinality of each column
o Data type

o Number of rows

» Strings

o Average size is relevant for dictionary size

* No easy formula can be applied

m sqlbi



Processing Memory Usage

 Each table is sequential
o No parallelism on partitions

 Many tables can be loaded in parallel

« Eachtable
o Divided in segments (8 million rows each)

 For each segment

- Load

- Compress

o Store

o Parallelism at the column level — sqlbi



Query Memory Usage

Simple queries requires some memory

Complex queries require more memory

- Spooling of temporary values
o Materialization of datasets

Cache requires memory

Materialization is the big issue

m sqlbi



Early Materialization

Where 411]3(15 4 Project on 3
2] 171380 (custID, Price) 3

4 | 2 |2 |7
4111 3113 SELECT custID, SUM(price)
FROM Sales
4 | 3|3 |42
WHERE (prodID = AND (storeID = 1)
4 | 1|3 80 GROUP BY custID
Construct e  Strategy: Rebuild rows before any processing
takes place
2 2 7
(4,1,4) . Performance limited by:
1 3 13
prodID 3 3 42 o Cost to reconstruct ALL rows
1 3 30 o Need to decompress data
storelD custlD price o Poor memory bandwidth utilization

m sqlbi



SELECT custID, SUM(price)

Late ) ) ) FROM Sales

Materialization WHERE (prodID = 4) AND (storeID = 1)
GROUP BY custlID

3 |13
Group |_,
3 180 SUM

AND |

/ W \ | Construct l

1 0
1 1 3 13
1 0 3 80
1 1 t |
T T Scan and filter Scan and filter
Where Where by position by position
prodid = 4 storelD=1
(4,1,4) 2 2 0 7
1 3 1 13
preciD 3 3 0 42
1 3 1 80

m sqlbi

storelD custiD price



Materialization

 Materializations happens for

o Complex Joins
- Complex lterators
o Temporary data spooled for further processing

« Memory requirements

- Might be more than the whole database
- Spooled data is not compressed

m sqlbi



Storage Internals

* Files in DataDir folder, one folder per database

* File types & file extensions / names

- Dictionary: .DICTIONARY
o Data: .IDF

o Indexes: .IDF

POS_TO_ID, ID_TO_POS
- Relationships: GUID + .HIDX

o Hierarchies: .IDF

- CHILD_COUNT, FIRST_CHILD_PQOS

+ MULTI_LEVEL_ID, PARENT_POS .
m sqlbi



Availlable DMV

You can use DMV to query the server and discover the size of each
object

-- Returns all the DMV

select * from $system.discover schema rowsets

-- Discover memory usage of all objects

select * from
$system.discover object memory usage

m sqlbi



Availlable DMV

You can use DMV to query the server and discover the size of each
object

-- Discover details of individual columns

select * from
$system.discover_storage table columns

-- Discover details of segments

select * from
$system.discover storage table column_ segments

m sqlbi



If you don't like DMV...

 You can avoid typing and remembering DMV

 Using PowerPivot

o Kasper De Jonge wrote a beautiful PowerPivot
data model

http://www.powerpivotblog.nl/what-is-using-all-that-memory-on-my-analysis-
server-instance

e Just...
o Open the Excel file

o Refresh
o Browse the model

m sqlbi


http://www.powerpivotblog.nl/what-is-using-all-that-memory-on-my-analysis-server-instance

Reduce Dictionary Size

e Reduce number of distinct values

o DatelTime: split in two columns

- Date
- Time

- Floating Point Values: fix precision
- 10.231 > 10.2

 Reduce strings length

e All this should be done in source data (ie SQL
views), not in calculated columns

m sqlbi



Reduce Table Size

 Remove useless columns

 Avoid partial results in calculated columns

o They tend to have many distinct values
o They increase the number of columns

e Beware of Junk Dimensions

o Five Tinylnt are better than one int
o Less distinct values
o Better columnstore data structure

m sqlbi



Optimize Degenerate Dimensions

« Storing an ID for DrillThrough is expensive

o One different value for every row
o Large dictionary in large fact table

* Consider splitting in more columns

o Every column has a smaller dictionary

* |Impact on query performance

o Good for drillthrough or single lookup

- Bad for distinct count / filters

- Slow response time
Requires memory for spooling n sqlbi



Split String Column

Split a 10-character length string into two 5-character strings

SELECT
LEFT( TransactionID, 5 )
AS TransactionHighID,
SUBSTRING(
TransactionID,
6!
LEN( TransactionID ) - 5
) AS TransactionLowID,
Quantity,
Price
FROM Fact

m sqlbi



Split Integer Column

Split 100 million range in two 10.000 ranges
Beware of possible materialization later on

SELECT
TransactionID / 10000 AS TransactionHighlID,
TransactionID % 10000 AS TransactionLowID,
Quantity,
Price

FROM Fact

m sqlbi



Split Column Optimization

« Splitting saves memory but increases process

time

 Query performance penalty for materialization

Number of Columns Process Time Cores Used Disk Size

1 (original) 02:48 1 2,811 MB
2 03:21 up to 8 191 MB
3 03:49 up to 8 129 MB
4 04:01 up to 8 97 MB
3 05:32 up to 8 105 MB

m sqlbi



Processing Steps

e Process Data

o Load, Compress, Store

e Process Other Structures

o Calculated Columns
o |Indexes
o Relationships

o Hierarchies

m sqlbi



Memory Usage During Process

e Transactional Process

o Old data is still in memory
- New data is processed
o New data is switched in

 During processing

o Memory for old data (1x)
o Memory for processing (2x)

A total of 3x is nheeded to process an object

m sqlbi



Reduce Processing Memory

« Split processing in steps
o Divide tables
o Divide processing steps (data — recalc)

e |ssue a ProcessClear in advance

o Data will not be available
o A lot of memory will be freed
o Issued in a different transaction

m sqlbi



Welghted Aggregation

In order to compute Mean Price we need to follow a weighted
average pattern, using the quantity as the weight

Y.(Qty X Price)
2.(Qty)

MeanPrice =

m sqlbi



Classical Weighted Avg Solution

Like we do in Multidimensional: add a column to the fact table and
use SUM to leverage aggregations and max scanning speed

MeanPrice :=

SUM ( [PriceMultipliedByQuantity] )
/
SUM ( [OrderQuantity] )

m sqlbi



Performance Impact

 Column PriceMultipliedByQuantity

o Huge number of distinct values
o Much greater than the source columns

« On aproduction database

o Query speed: pretty good

- Test query: 13 seconds
- Using many-to-many on a 4 billion rows table

o Column size: 9GB (RAM!)

« DAX requires a different approach

m sqlbi



Welghted Averages: Naive Formula

Use SUMX

Multiplication pushed down to xVelocity

o Runs in parallel on all cores
o Does not require table spooling

o Reduced memory usage during query

On the same production database

- Test query: 3 seconds
o l.e.4 times faster

* As often: simpler is faster and easier .
m sqlbi



What to Store in the Cube?

* Tabular has different priorities than
Multidimensional

« Distinct Count of values is the top priority

o s [qaniy o o s

10 2.55 24.00
2 12 8 2.55 0.4 20.00
847 12 9 255 0.95 22.00

m sqlbi



What to Store in the Cube?

Sales Amount
should be

computed at leaf
level at query time

These columns are
needed




Let's play together...

Now we know the theory

Time to work with some real data

Source: Contoso Retail Analysis 2013

Steps:
o Restore the database
o Investigate on the database content

- Define an optimization plan

m sqlbi



xVelocity — Conclusions

e Columnar databases are different

* Dictionary size
o Fixed amount of RAM
o Larger for strings

« Segment size

- Grows with the number of rows
- Depends on number of distinct values

 Segmentation

o Drives parallelism at query time
o Reduces bit usage for many columns m sqlbi






Coming up...

Speaker Title Room
Christina E. Leo Why APPLY? Theatre
Jennifer Stirrup Advanced Data Visualisation in Reporting Services 2012 Exhibition B

Denny Cherry  Optimizing SQL Server Performance in a Virtual Environment Suite 3

Christian Wade MDX vs. DAX: Currency Conversion Faceoff Suite 1
Thomas LaRock Database Design: Size Does Matter! Suite 2
Peter ter Braake SSIS 2012 logging and monitoring Suite 4

]
#SQLBITS sulinlts



Consulting Assessment Outsourcing Technical
Fellowship

Find out more on

www.sqlbi.com/consulting



