Alberto Ferrari
alberto.ferrari@sqlbi.com

DAX Query Engine
Internals

m sqlbi


http://www.sqlbi.com

Who's speaking Spaghetti English?

Bl Expert and Consultant _

* Founder of www.sglbi.com

o Problem Solving

o Complex Project Assistance

o DataWarehouse Assesments and Development
o Courses, Trainings and Workshops

* Book Writer

 Microsoft Business Intelligence Gold Partners

e SSAS Maestro — MVP — MCP

Mecroson.

Microsoft

SQL Server 2012

Analysis Services Buuldlng Datz
The BISM Tabular Model

with PowerPivot

m sqlbi




Tabular Query Architecture

DAX / MDX query

Analysis Services 2012
Tabular Model

Query

Query

In-Memory Mode

DirectQuery Mode

Storage

Engine Query

VertiPaq Storage

SQL Query

Process = Read Data
from External Sources

External Data Sources

m sqlbi



Agenda

 Tabular Query Architecture
* Monitoring and Query Plans
 Optimization Examples

 Query Examples

m sqlbi



Tabular Two Engines

* Formula Engine

o Handles complex expressions
o Single threaded

« Storage Engine (VertiPaqg / xVelocity)

o Handles simple expressions
o Executes queries against the database
- Multithreaded

m sqlbi



Tabular: Rich & Fast

DAX VertiPaq Query

()

Rich 8 Simple
Single threaded per query @ One core per segment
Designed for expressivity ® Optimized for speed

8 B

m sqlbi



Formula Engine

= ey e



Formula Engine Vertipaq

&
4 e A1
lﬁ ekl z B



Trust the Rain Man

* Optimizing DAX means:
o Reduce FE usage
- Increase SE usage

 Atthe end, itis very easy, we only need to
understand who processes what ©

o Whatis computed in FE?
- And what is computed in SE?
- How to move computation in SE?

 Time to dive deeper in the DAX engine
m sqlbi



Understanding Query Plans

* Logical Query Plan

o ltisthe logical flow of the query
o Fired as standard text
o Pretty hard to decode

* Physical Query Plan

o Thelogical query plan executed by the engine
- Can be very different from the logical one
- Uses different operators

* VertiPaqg Queries
- Queries executed by the xVelocity engine

m sqlbi



DAX Query Optimization Flow

[ Fire Logical Plan Event

[ Fire Physical Plan Event

Build DAX Expression Tree

Buld DAX Logical Plan

Simplify DAX Logical Plan

Build DAX Physical Plan

| —
——

Execute DAX Physical Plan

Some Vertipaqg queries can be executed
in order to gather additional information
about data that is to be queried

Ibi



DAX 1s not cost-based

« Unlike SQL Server

 Data is gathered to analyze

o When to perform filtering
- How to resolve joins
o Materialization needs

 But the query plan does not change with
different row counts

m sqlbi



SQL Server Profiler

Trace Properties @

General Events Selection

Review selected events and event columns that are being traced. Selection cannot be changed while tracing is active.

Ewents EwentSubclass | TextData | Connectionl D | MTUzeame | ApplicationM ame | IntegerD ata | StartTime | Cur

- i Errors and Warnings

¥ Ermar [ ~ 3 3 v
= Queries Events

v Quey End 2 2 v I v v
- Query Processing

I D GQueny Plan [ [ v 3 =3 v

v “ertiPag SE Query End 2 2 v I v v
€| 1 | +
Errors and % amnings

Collection of ewerts for server errors., B

~

EventSubclazs [no filkers applied)

Ewert Subclazs provides additional information about each event clazs. Calumn Filkers. . |

Organize Columns... |

QK | Cancel | Help |

e (Catches events from SSAS

- Queries Events
o Query Processing m sqlbi



Monitoring a Query

Trace of a simple query

EVALUATE

CALCULATETABLE(
SUMMARIZE (
"Internet Sales’',
Geography[State Province Code],
"Sales", SUM( 'Internet Sales'[Sales Amount] )

)>
FILTER(

Customer,

Customer[Last Name] = "Anand"
)

m sqlbi



1° VertiPaq Query

Note the usage of DATAID to filter «kxAnand»

SELECT
[Customer].[CustomerKey ]
FROM
[ Customer]
WHERE
( PFDATAID( [Customer].[LastName] ) = 81 )

m sqlbi



2° VertiPaq Query

Query using JOINS inside xVelocity. These joins do not require
materialization and can be executed very fast in parallel

SELECT
[ Geography].[StateProvinceCode]
FROM [Internet Sales]
LEFT OUTER JOIN [Customer]
ON [Internet Sales].[CustomerKey] = [Customer].[CustomerKey]
LEFT OUTER JOIN [Geography]
ON [Customer].[GeographyKey] = [Geography].[GeographyKey]
WHERE
[Customer].[CustomerKey] IN
(11096, 11989, 17005, 22513, 28899, 15054,
19626, 20344, 25918, 27141...
[74 total values, not all displayed]);

m sqlbi



DAX Query Plan

Simplifed text of the query plan, gives a good idea of what the FE is
going to execute. In red the parts executed by xVelocity

CalculateTable
AddColumns
Scan_VertiPag
GroupBy VertiPagqg
Scan_VertiPag
Sum _VertiPagq
Scan_VertiPag
'Internet Sales'[Sales Amount]
Filter VertiPag
Scan_VertiPag
"Customer'[Last Name] = Anand

m sqlbi



Query Plans side by side

Simplifed text of the query plan, gives a good idea of what the FE is
going to execute. In red the parts executed by xVelocity

CalculateTable
AddColumns
Scan_VertiPaq
GroupBy VertiPagq
Scan_VertiPaq
Sum_VertiPaq
Scan_VertiPaq
[Sales Amount]
Filter VertiPaq
Scan_VertiPaq
"Customer'[Last Name]

= Anand

EVALUATE
CALCULATETABLE(
SUMMARIZE (
"Internet Sales’,
Geography[State Province Code],
"Sales", SUM( [Sales Amount] )

)>
FILTER(

Customer,

Customer[Last Name] = "Anand"
)

m sqlbi



Query Running: Step 1

This query is the first one used to really execute the DAX query.
Note that SUM is executed inside xVelocity, not in the Formula Engine

SELECT
[Geography].[StateProvinceCode],
SUM([Internet Sales].[SalesAmount])
FROM
[Internet Sales]
LEFT OUTER JOIN [Customer]
ON [Internet Sales].[CustomerKey]=[Customer].[CustomerKey]
LEFT OUTER JOIN [Geography]
ON [Customer].[GeographyKey]=[Geography].[GeographyKey]
WHERE
[Customer].[CustomerKey] IN
(11096, 11989, ...[74 total values, not all displayed]) VAND
[Geography].[StateProvinceCode] IN
('vVIC', 'BC', ...[21 total values, not all displayed]);

m sqlbi



Query Running: Step 1

This query is identical to the second one computed during
optimization and will hit the cache

SELECT
[ Geography].[StateProvinceCode]
FROM [Internet Sales]
LEFT OUTER JOIN [Customer]
ON [Internet Sales].[CustomerKey] = [Customer].[CustomerKey]
LEFT OUTER JOIN [Geography]
ON [Customer].[GeographyKey] = [Geography].[GeographyKey]
WHERE
[Customer].[CustomerKey] IN
(11096, 11989, 17005, 22513, 28899, 15054,
19626, 20344, 25918, 27141...
[74 total values, not all displayed]);

m sqlbi



Simple Query Plan

4 VertiPag Queries

o 2 before execution

o 2 during execution

- 1 performed GROUPBY and SUM in VertiPaq
« 1hitthe cache

 Intermediate results are spooled
* Final JOIN performed by Formula Engine

 Thisis avery good query plan

m sqlbi



Is SUMX the Evil?

This SUMX is resolved inside VertiPaq because it is a simple operation
that VertiPag know how to handle. No iteration happens here.

EVALUATE
ROW (
"Sum",
SUMX (
"Internet Sales',
"Internet Sales'[Sales Amount] / 'Internet Sales'[Order Quantity] )

SELECT

SUM( [Internet Sales].[SalesAmount] / [Internet Sales].[OrderQuantity] )
FROM

[Internet Sales];

HD :qllJi



Is SUMX the Evil?

If the expression is too complex, CallbackDatalD appears, meaning a
call back to formula engine during the VertiPaq scan.

EVALUATE
ROW (
"Sum",
SUMX (
"Internet Sales',
IF (
'"Internet Sales'[Sales Amount] > 0,
\ "Internet Sales'[Sales Amount] / 'Internet Sales'[Order Quantity]
)
)
SELECT
SUM(
[CallbackDataID(
IF (
"Internet Sales'[Sales Amount] > O,
) "Internet Sales'[Sales Amount] / 'Internet Sales'[Order Quantity]]
)]
(

PFDATAID( [Internet Sales].[OrderQuantity] ),
PFDATAID( [Internet Sales].[SalesAmount] )

) )
FROM [Internet Sales];

HD :qllJi



CallBackDatalD in Action

VERTIPAQ SCAN FORMULA ENGINE

SalesAmount uantit
SalesAmount | Quantity ; &

[Sales Amount] > @,
083 Qb vingl  [sales avount] / [Quantity]
)

JU 2

Aggregation computed

inside Vertipaqg, no spooling
Wwas hecessary

SELECT
SUM(
[CallbackDataID(
IF (
"Internet Sales'[Sales Amount]] > ©
"Internet Sales'[Sales Amount]] / 'Internet Sales'[Order Quantity]]

)

z]
PFDATAID( [Internet Sales].[OrderQuantity] ),
PFDATAID( [Internet Sales].[SalesAmount] )

) )
FROM [Internet Sales];

HD :qllJi



CallBackDatalID Performance

Slower than pure Vertipaqg

Faster than pure Formula Engine

o Highly parallelized
o Works on compressed data

Does not require materialization

- No spooling of temporary results
o Less memory used

Materializes a single row

m sqlbi



SQL Server Profiler

e There are other useful info

o CPUTime
o Duration
o Event Subclass

 CPU Time >= Duration

o Many cores run in parallel
o Only during VertiPaq scans
o Formula Engine is still single-threaded

m sqlbi



Monitor MDX and DAX

e MDX Queries

o Generate DAX Query Plans
o Not translated to DAX

e SQL Queries

o Useful if you cannot monitor SQL Server
o Optimize SQL to optimize SSAS

m sqlbi



Clear the Cache

Always remember to clear the cache prior to execute any
performance test, otherwise numbers will be contaminated

<Batch xmlns="http://schemas.microsoft.com/analysisservices/2003/engine">
<ClearCache>
<Object>
<DatabaseID>Adventure Works DW Tabular</DatabaseID>
</0Object>
</ClearCache>
</Batch>

m sqlbi



Currency Conversion

Two SUMX are converted to two iterations

[FirstCurrencyAmount] :=

SUMX (
DimCurrency,
SUMX (
DimDate,
CALCULATE(
VALUES( CurrencyRate[AverageRate] )
* SUM( FactInternetSales[SalesAmount] )
)
)
)

m sqlbi



Currency Conversion

Simple SUMX over CrossJoin is resolved as a single VertiPaqg scan
with CallbackDatalD to compute the multiplication.

[SecondCurrencyAmount] :=

SUMX (

CROSSIOIN(

DimCurrency,

DimDate
) 5
CALCULATE(

VALUES( CurrencyRate[AverageRate] )
* SUM( FactInternetSales[SalesAmount] )

m sqlbi



Filter as Soon as You Can

This query computes YTD and QTD inside a loop and then removes
empty values.

DEFINE
MEASURE 'Internet Sales'[Sales] =
CALCULATE( ROUND( SUM( 'Internet Sales'[Sales Amount] ), 0 ) )
MEASURE 'Internet Sales'[YTD Sales] =
TOTALYTD( [Sales] , 'Date'[Date] )
MEASURE 'Internet Sales'[QTD Sales] =
TOTALQTD( [Sales] , 'Date'[Date] )
EVALUATE

FILTER(
ADDCOLUMNS (
CROSSJOIN(
VALUES( 'Date'[Calendar Year] ),
VALUES( 'Date'[Month] ),
VALUES( 'Date'[Month Name] )

"éales", [Sales],
"YTD Sales", [YTD Sales],
"QTD Sales", [QTD Sales]
),
NOT ISBLANK( [Sales] )

)
ORDER BY 'Date'[Calendar Year], 'Date’'[Month]

m sqlbi



Filter as Soon as You Can

This second query removes empty rows before computing expensive
measures. It runs 7 times faster even if it computes [Sales] twice.

DEFINE
MEASURE 'Internet Sales'[Sales] =
CALCULATE( ROUND( SUM( 'Internet Sales'[Sales Amount] ), 0 ) )
MEASURE 'Internet Sales'[YTD Sales] =
TOTALYTD( [Sales] , 'Date'[Date] )
MEASURE 'Internet Sales'[QTD Sales] =
TOTALQTD( [Sales] , 'Date'[Date] )
EVALUATE

ADDCOLUMNS (
FILTER(
CROSSJOIN(
VALUES( 'Date'[Calendar Year] ),
VALUES( 'Date'[Month] ),
VALUES( 'Date'[Month Name] )

)

NOT ISBLANK( [Sales] )
"éales", [Sales],
"YTD Sales", [YTD Sales],
"QTD Sales", [QTD Sales]

)
ORDER BY 'Date'[Calendar Year], 'Date’'[Month]

m sqlbi



Use Relationships

Relationships can be pushed down to VertiPaqg, CALCULATE
conditions cannot

EVALUATE
ADDCOLUMNS (
DimProduct,
"SumOfSales", CALCULATE(
SUM( FactInternetSales[SalesAmount] ),
USERELATIONSHIP( DimProduct[ProductKey], FactInternetSales[ProductKey] )

)
)
EVALUATE
ADDCOLUMNS (
DimProduct,
"SumOfSales"™, CALCULATE(
SUM( FactInternetSales[SalesAmount] ),
FILTER(
FactInternetSales,
DimProduct[ProductKey] = CALCULATE( VALUES( FactInternetSales[ProductKey] ) )
)
)
)

HD :qllJi



Use Relationships

The first VertiPaq query resolves the JOIN, the second one is a
simple scan and the JOIN will be performed inside Formula Engine

SELECT
DimProduct.ProductKey,

SUM (FactInternetSales.SalesAmount)
FROM FactInternetSales
LEFT OUTER JOIN DimProduct
ON FactInternetSales.ProductKey = DimProduct.ProductKey
WHERE

SELECT

FactInternetSales.ProductKey,

SUM (FactInternetSales.SalesAmount)
FROM FactInternetSales
WHERE

HD :qllJi



Optimizations: Conclusions

Optimizing DAX is not a black art
o Like it was with MDX

Query plan greatly help understanding what is
happening

Optimizing DAX is your only choice to
iImprove the database responsiveness

We scratched the surface... experience is the
key of being effective

m sqlbi



General Rules

Use the simplest formulas

o Prefer ADDCOLUMNS to SUMMARIZE
o Avoid complex calculations in measures

« Don't use error-handling functions extensively

o They are sloooooow
o Good only in measures

e Build a correct data model

o Reducina distinct count of values for columns is the
main target

o Keep it simple, relational, clear

Push calculations down to the VertiPaq engine

o Not an easy task to do looking at query plans
- But, after some experience, you will learn it m sqlbi



The Test Data Model

MNetworks - 'Cl'u"lanv To Many Helatinnship)
PK | 1D _Network

Individuals
Metwon
T 9,000 PK |ID Individual
P -
Individual
_— Widuall 176,000
Clon Audience 4
digndar
PK,FK1 | ID_Individual TargetsForindividuals
PK |ID Date |a¢—— pk Fk2 |ID_Date oK FKL 11D Tareet
PEK,FK3 | ID_Tim !
R o il Fﬁ ) PK,FK2 | ID Individual
1,440 i
’ DateStar
4.058.451.434 DateEnd| 2 705,081
Time Targets
PK |ID Time PK | ID Target
i Target
Minut 140

230 b

I sqiDi



Top Three Fears for UDM Developers

 DISTINCT COUNT

o «Do you REALLY need DISTINCT COUNT of
Customer»?

* Many-To-Many Relationships

o «Well... | can try to optimize them in some way»
o «Let me search that whitepaper...»

e Leaf-Level Calculations

o «|t would be better to compute this during ETL»
o «Oh... | see... do you need it dynamic? ... »

m sqlbi



Conclusions

« DAX s asimple language
- Effective in expressing complex queries
- Looks strange, but easier than MDX

 Optimizing Tabular means optimizing DAX
o Pushing calculations to VertiPaq

o Trust the Rain Man, he’s your best friend!
o Sometimes, need to change the data model

« DAX s simple, it is not easy... but this is the
fun part of it!

m sqlbi






Coming up...

Speaker Title Room

Alex Whittles Data Modeling for Analysis Services Cubes Theatre
Allen White Maintain SQL Server System and Performance with PowerShell Exhibition B
Hugo Kornelis ~ Everything you always wanted to know about MERGE Suite 3

Stephan Stoltze Excel 2013 - Whats new beside PowerPivot and Power View? Suite 1
Christian Bolton Advanced SQL Server 2012 HA and DR Architectures Suite 2

Niko Neugebauer Dynamic MSBI content generation Suite 4

| .
#SQLBITS s [I “Its



Consulting Assessment Outsourcing Technical
Fellowship

Find out more on

www.sqlbi.com/consulting



