
Temporal Snapshot Fact

Table
A new approach to data snapshots

Davide Mauri

dmauri@solidq.com

Mentor - SolidQ

SQL Bits X

mailto:dmauri@solidq.com

EXEC sp_help ‘Davide Mauri’

• Microsoft SQL Server MVP

• Works with SQL Server from 6.5, on BI from

2003

• Specialized in Data Solution Architecture,

Database Design, Performance Tuning, BI

• President of UGISS (Italian SQL Server UG)

• Mentor @ SolidQ

• Twitter: mauridb

• Blog: http://sqlblog.com/blogs/davide_mauri

Agenda

• The problem

• The possible «classic» solutions

• Limits of «classic» solutions

• A temporal approach

• Implementing the solution

• Technical & Functional Challenges

 (and their resolution )

• Conclusions

The Problem

The request

• Our customer (an insurance company)

needed a BI solution that would allow

them to do some “simple” things:

– Analyze the value/situation of all insurances

at a specific point in time

– Analyze all the data from 1970 onwards

– Analyze data on daily basis

• Absolutely no weekly or monthly aggregation

The environment

• On average they have 3.000.000

documents related to insurances that need

to be stored.

– Each day.

• Data is mainly stored in a DB2 mainframe

– Data is (sometimes) stored in a “temporal”

fashion

• For each document a new row is created each

time something changes

• Each row has “valid_from” and “valid_to” columns

Let’s do the math

• To keep the daily snapshot

– of 3.000.000 documents

– for 365 days

– for 40 years

• A fact table of near 44 BILLION rows

would be needed

The possible solutions

• How can the problem be solved?

– PDW and/or Brute Force was not an option

• Unfortunately none of the three known

approaches can work here

– Transactional Fact Table

– Periodic Snapshot Fact Table

– Accumulating Snapshot Fact Table

• A new approach is needed!

The classic solutions
And why they cannot be used here

Transaction Fact Table

• One row per fact occurring at a certain point
in time

• We don’t have facts for every day. For
example, for the document 123, no changes
were made on 20 August 2011

– Analysis on that date would not show the
document 123

– “LastNonEmpty” aggregation cannot help since
dates don’t have children

– MDX can come to the rescue here but…
• Very high complexity

• Potential performance problems

Accumulating Snapshot F.T.

• One fact row per entity in the fact table

– Each row has a lot of date columns that store

all the changes that happen during the entity’s

lifetime

– Each column date represents a point in time

where something changed

• The number of changes must be known in

advance

• With so many date columns it can be

difficult to manage the “Analysis Date”

11

Periodic Snapshot Fact Table

• The fact table holds a «snapshot» of all

data for a specific point in time

– That’s the perfect solution, since doing a

snapshot each day would completely solve

the problem

– Unfortunately there is just too much data

– We need to keep the idea but reduce the

amount of data

12 BIA-406-S | Temporal Snapshot Fact Table

A temporal approach
And how it can be applied to BI

Temporal Data

• The snapshot fact table is a good starting

point

– Keeping a snapshot of a document for each

day is just a waste of space

– And also a big performance killer

• Changes to document don’t happen too

often

– Fact tables should be temporal in order to

avoid data duplication

– Ideally, each fact row needs a “valid_from”

and “valid_to” column

Temporal Data

• With Temporal Snapshot Fact Table

(TSFT) each row represents a fact that

occurred during a time interval not at a

point in time.

• Time Intervals will be right-opened in order

to simplify calculations:

 [valid_from, valid_to)

 Which means:

 valid_from <= x < valid_to

Temporal Data

• Now that the idea is set, we have to solve
several problems:

– Functional Challenges
• SSAS doesn’t support the concept of intervals, nor

the between filter

• The user just wants to define the Analysis Date,
and doesn’t want to deal with ranges

– Technical Challenges
• Source data may come from several tables and

has to be consolidated in a small number of TSFT

• The concept of interval changes the rules of the
“join” game a little bit…

Technical Challenges

• Source data may come from table with

different designs:

 temporal tables

 non-temporal tables

• Temporal Tables

– Ranges from two different temporal tables

may overlap

• Non-temporal tables

– There may be some business rules that

require us to «break» the existing ranges

Technical Challenges

• Before starting to solve the problem, let’s
generalize it a bit (in order to be able to study
it theoretically)

• Imagine a company with this environment
– There are Items & Sub Items

– Items have 1 or more Sub Items
• Each Sub Item has a value in money

• Value may change during its lifetime

– Customers have to pay an amount equal to the
sum of all Sub Items of an Item

• Customers may pay when they want during the year,
as long as the total amount is paid by the end of the
year

Data Diving

Technical Challenges

• When joining data, keys are no longer

sufficient

• Time Intervals must also be managed

correctly, otherwise incorrect results may

be created

• Luckily time operators are well-known (but

not yet implemented)

– overlaps, contains, meets, ecc. ecc.

Technical Challenges

• CONTAINS (or DURING) Operator:

• Means:

 b1<=b2 AND e1>=e2

i1

b1 e1

i2

b2 e2

Technical Challenges

• OVERLAPS Operator:

• Means:

 b1<=e2 AND b2 <=e1

• Since we’re using right-opened intervals, a

little change is needed here:

 b1<e2 AND b2 <e1

i1

b1 e1

i2

b2 e2

Technical Challenges

• Before going any further it’s best we start

to «see» the data we’re going to use

2008 2009 2010

Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar

Item 1 A B C

Item 1.1 A B C D B C

Item 1.2 A B C D E C

Item 2 A B C D C

Item 2.1 A B C D C

JOINs & Co.

Technical Challenges

• As you have seen, even with just three

tables, the joins are utterly complex!

• But bearing this in mind, we can now find

an easier, logically equivalent, solution.

• Drawing a timeline and visualizing the

result helps a lot here.

Technical Challenges

Range for one Item

Range for the Sub Item

Payment Dates

«Summarized» Status

1 2 3 4 5 6

Intervals will represent a

time where nothing

changed

So, on the other way round,

dates represent a time in

which something changed!

Technical Challenges

• In simpler words we need to find the

minimum set of time intervals for each

entity

– The concept of "granularity" must be changed

in order to take into account the idea of time

intervals

– All fact tables, for each stored entity, must

have the same granularity for the time interval

• interval granularity must be the same “horizontally”

(across tables)

• interval granularity must be specific for each entity

(across rows: “vertically”)

Technical Challenges

• The problem can be solved by

«refactoring» data.

• Just like refactoring code, but working on

data

– Rephrased idea: “disciplined technique for

restructuring existing temporal data, altering

its internal structure without changing its

value”

• http://en.wikipedia.org/wiki/Code_refactoring

http://en.wikipedia.org/wiki/Code_refactoring

Technical Challenges

• Here’s how:

• Step 1

– For each item, for

each temporal table,

union all the distinct

ranges

Technical Challenges

• Step 2

– For each item, take all the

distinct:

– Dates from the previous step

– Dates that are known to

«break» a range

– The first day of each year

used in ranges

Technical Challenges

• Step 3

– For each item, create

the new ranges, doing

the following steps

• Order the rows by date

• Take the «k» row and

the «k+1» row

• Create the range

 [Datek, Datek+1)

The New LEAD operator is exactly

what we need! 

Technical Challenges

• When the time granularity is the day, the

right-opened range helps a lot here.

– Eg: let’s say the at some point, for an entity,

you have the following dates that has to be

turned into ranges:

Technical Challenges

• With a closed range intervals can be

ambiguous, especially single day intervals:

– The meaning is not explicitly clear and we

would have to take care of it, making the ETL

phase more complex.

– It’s better to make everything explicit

Technical Challenges

• So, to avoid ambiguity, with a closed range
the resulting set of intervals also needs to
take time into account:

– What granularity to use for time?
• Hour? Minute? Microseconds?

– Is just a waste of space

– Date or Int datatype cannot be used

Technical Challenges

• With a right-opened interval everything is

easier:

– Date or Int datatype are enough

– No time used, so no need to deal with it

Technical Challenges

• Step 4

– «Explode» all the temporal source tables so

that all data will use the same (new) ranges,

using the CONTAINS operator:

Technical Challenges

• The original Range:

Becomes the equivalent

set of ranges:

If we would have chosen a daily

snapshot, 425 rows would have been

generated…not only 12!

(That’s a 35:1 ratio!)

Technical Challenges

• Now we have all the source data

conforming to a common set of intervals

– This means that we can just join tables

without having to do complex temporal joins

• All fact tables will also have the same

interval granularity

• We solved all the technical problems! 

SSIS In Action

Functional Challenges

• SSAS doesn’t support time intervals but…

• Using some imagination we can say that

– An interval is made of 1 to “n” dates

– A date belongs to 1 to “n” intervals

• We can model this situation with a Many-

To-Many relationship!

Functional Challenges

• The «interval dimension» will then be

hidden and the user will just see the

«Analysis Date» dimension

• When such date is selected, all the fact

rows that have an interval containing that

date will be selected too, giving us the

solution we’re looking for 

Functional Challenges

Date

Dimension

Fact Table

DateRange

Dimension
Factless

Date-DateRange

The user wants

to analyze data

on 10 Aug 2009

10 Aug is

contained in two

Ranges

SSAS uses all

the found ranges
All the (three)

rows related to

those ranges are

read

All Togheter!

The final recap
And a quick recipe to make everything easier

Steps for the DWH

• For each entity:

– Get all “valid_from” and “valid_to” columns

from all tables

– Get all the dates that will break intervals from

all tables

– Take all the gathered dates one time (remove

duplicates) and generate new intervals

– «Unpack» original tables in order to use the

newly generated intervals

Steps for the CUBE

• Generate the usual Date dimension

– Generate a «Date Range» dimension

– Generate a Factless Date-DataRange table

– Generate the fact table with reference to the

Date Range dimension

– Create the M:N relationship

47 BIA-406-S | Temporal Snapshot Fact Table

Conclusion and Improvements

Some ideas for the future

Conclusion and improvements

• The defined pattern can be applied each time
a daily analysis is needed and data is not
additive
– So each time you need to “snapshot” something

• The approach can also be used if source
data is not temporal, as long as you can turn
it into a temporal format

• Performance can be improved by
partitioning the cube by year or even by
month

Conclusion and improvements

• At the end is a very simple solution 

• Everything you’ve seen is the summary of

several months of work of the Italian

Team. Thanks guys!

Questions?

Thanks!

52 © 2012 SolidQ

