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What is Time Intelligence? 

• Many different topics in one name 

o Year To Date 

o Quarter To Date 

o Running Total 

o Same period previous year 

o Working days computation 

o Fiscal Year 

• Well…seems to be anything related with time, 

handled in an intelligent way  

What do you need to know? 

• Not really much 

o DAX basics 

o CALCULATE basics 

• If not, add 100 to the session level 

• Topic is DAX, we are going to use PowerPivot 

Calendar Table 

• First of all we need some data 

• And a calendar table 

o Built in Excel 

o Or in a SQL Table 

• Calendar table properties 

o All dates should be present 

o No holes 

o Otherwise time intelligence will not work 

Year To Date: the easy way 

SalesAmountYTD := 
 
TOTALYTD( 
    SUM (Sales[SalesAmount]), 
    Calendar[FullDate]  
) 
 

TOTALYTD: life is easy 
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Mark as Date Table 

• In Tabular, use Mark as Date Table 

• Set the column containing the date 

• Needed to make time intelligence works 

• Used by Power View as metadata information 

• Many tables can be marked as date table 

Set Sorting Options 

• Month names do not sort alphabetically 

o April is not the first month of the year 

• Use Sort By Column 

• Set all sorting options in the proper way 

• Beware of sorting granularity 

o 1:1 between names and sort keys 

Use The Right Parameter 

The parameter is the Date column in the Calendar Table 

 Not the SalesOrderHeader[OrderDate] 

 Otherwise, you get wrong results 

 

LineTotalYTD := 
 
TOTALYTD( 
    SUM (Sales[SalesAmount]), 
    Sales[OrderDate]  
) 
 

Handling Fiscal Year 

SalesAmountYTD := 
 
TOTALYTD ( 
    SUM (Sales[SalesAmount]), 
    Calendar[FullDate], 
    "06-30" 
) 
 

The last, optional, parameter is the end of the fiscal year 

Default: 12-31 (or 31/12 - locale dependent) 
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Year To Date: the DAX way 

SalesAmountYTD := 
 
CALCULATE ( 
    SUM (Sales[SalesAmount]), 
    DATESYTD (Calendar[Date])  
) 
 

• DATESYTD: Returns a set of dates, from the start of the year up to 

the parameter date 

 

• CALCULATE: Creates a filter context and performs the SUM 

operation 

 

Running Total 

SalesAmountRT := 
 
CALCULATE ( 
    SUM (Sales[Amount]), 
    FILTER ( 
        ALL (Calendar), 
        Calendar[FullDate] <= MAX (Calendar[FullDate]) 
    ) 
) 

• Running total, as most of the more complex time intelligence 

aggregations, needs the CALCULATE version, because there is no 

syntax sugaring here 

 

Same Period Last Year 

SalesSPLY := 
 
CALCULATE ( 
    SUM (Sales[SalesAmount]), 
    SAMEPERIODLASTYEAR (Calendar[FullDate]) 
) 
 

Same period in previous year, CALCULATE is needed 

Specialized version of DATEADD 

 

No hierarchies, here, different technique when compared with 

Multidimensional 

 

DATEADD 

SalesAmountlSPLY := 
 
CALCULATE( 
    SUM (Sales[SalesAmount]), 
    DATEADD (Calendar[FullDate], -1, YEAR) 
) 
 

Similar to SAMEPERIODLASTYEAR, used to calculate different offsets 
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PARALLELPERIOD 

SalesPPLY := 
 
CALCULATE( 
    SUM (Sales [LineTotal]), 
    PARALLELPERIOD (Calendar[FullDate], -1, YEAR) 
) 
 

Returns a FULL period of dates shifted in time 

 

The whole period is returned, regardless dates in the first parameter, 

very useful to compute percentages 

 

Period Table Approach 

• Many Time Intelligence Aggregations 

o Many measures 

o User Experience might not be the best 

• Tool Table (tool dimension in UDM) 

o Reduces the number of measures 

o Base measures can be hidden 

• Drawbacks 

o The code is harder to debug 

 

Multiple Calendar Tables 

• Calendar is often a role dimension 

o Many roles for a date 

o Many calendar tables 

• How many calendar tables? 

o Use many, only if needed by the model 

o Try to use only one table 

o Many calendars leads to confusion 

o And issues when slicing 

• Use proper naming convention 

Counting Working Days 

• How many working days in a date range? 

o Easily solved with Calendar table 

o Define a new column «WorkingDays» 

o Aggregate with SUM 

• Handles any date range 

• Works on any periods 

• No separation between fact tables and 

dimensions in Tabular 
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Check Delayed Orders 

• How many orders were delayed? 

o Easy: «ShipDate Greater Than DueDate» 

• How many working days of delay? 

o New Calculated Column 

o WorkingDayNumber 

• Incremental value from the start of table 

• Delta can be computed as difference 

Handling DateTime 

• If time is a useful information 

• Separate Date from Time 

o Date part  Calendar Table 

o Time part  Time Table 

• Reduces distinct values 

• Makes analysis much easier 

Semi Additive Measures 

• Additive Measure 

o SUM over all dimensions 

• Non Additive Measure 

o Different function over all dimensions 

o Example: average of the sale price 

• Semi Additive Measure 

o SUM over some dimensions 

o Different function over other dimensions 

o Time is the standard exception for aggregations 

o Examples 

• Warehouse stocking 
• Current account balance 

Current Account Balance 

• Month level correct 

• Quarter level wrong 

• Year level wrong 
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SemiAdditive Measures 

CALCULATE: to set the filter 

LASTDATE: to find the last child 

LastBalance := 
 
CALCULATE ( 
    SUM (Balances[Balance]),  
    LASTDATE (Date[Date]) 
) 

Moving Annual Total 

Moving window from the current date back one year 

CALCULATE( 
    SUM( SalesOrderDetail[LineTotal] ), 
    DATESBETWEEN( 
        OrderDate[Date], 
        NEXTDAY( 
            SAMEPERIODLASTYEAR( 
                LASTDATE( OrderDate[Date] ) 
             ) 
        ), 
        LASTDATE( OrderDate[Date] )  
    ) 
) 
 

Querying with Time Intelligence 

Using SUMMARIZE on the fact table yiedls an error, because dates in 

the fact table usually contain holes 

DEFINE  
    MEASURE 'Internet Sales'[PY Sales] = 
        CALCULATE( 
            [Internet Total Sales],  
            SAMEPERIODLASTYEAR( 'Date'[Date] )  
        ) 
 
EVALUATE 
 
SUMMARIZE( 
    'Internet Sales', 
    'Date'[Calendar Year], 
    'Date'[Month], 
    'Date'[Month Name], 
    "Sales", [Internet Total Sales], 
    "PY Sales", [PY Sales] 
) 

Querying with Time Intelligence 

The solution is to use the calendar table as the primary one, changing 

the shape of the query. 

DEFINE  
    MEASURE 'Internet Sales'[PY Sales] =  
        CALCULATE( 
            [Internet Total Sales],  
            SAMEPERIODLASTYEAR( 'Date'[Date] )  
        ) 
EVALUATE 
ADDCOLUMNS( 
    FILTER(  
        SUMMARIZE(  
            'Date', 
            'Date'[Calendar Year], 
            'Date'[Month], 
            'Date'[Month Name], 
            "Sales", [Internet Total Sales] 
        ), 
        [Sales] <> 0  
    ), 
    "PY Sales", [PY Sales] 
) 
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Conclusions 

• Time Intelligence is pretty easy 

o Many built-in functions 

o Calendar table is very important 

• Based on DAX formulas 

o Not no hierarchies 

• Formulas are sometime complex 

• But you can author very powerful calculations 

• Thus… learn DAX  
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